zoukankan      html  css  js  c++  java
  • Rectangle

    Rectangle

    Time Limit: 1000ms
    Memory Limit: 65536KB
    64-bit integer IO format: %lld      Java class name: Main
     
    frog has a piece of paper divided into n rows and m columns. Today, she would like to draw a rectangle whose perimeter is not greater than k.
     
     
    There are 8 (out of 9) ways when n=m=2,k=6
     
    Find the number of ways of drawing.
     

    Input

    The input consists of multiple tests. For each test:
     
    The first line contains 3 integer n,m,k (1n,m5104,0k109).
     

    Output

    For each test, write 1 integer which denotes the number of ways of drawing.
     

    Sample Input

    2 2 6
    1 1 0
    50000 50000 1000000000

    Sample Output

    8
    0
    1562562500625000000
    有技巧的暴力搜索方法:
        设总方格长和宽分别为n,m,一个长为i,宽为j(j 可以大于i,这里只是为了与总方格相对应)的矩形,可以找到有(n-i+1)*(m-j+1)个这样的矩形。
        并且, i <= min(n,k-1), 取过i后,j <= min(m,k-i);有i = (1 ~ min(n,k-1)),j = (1~min(m,k-i));所以可以通过枚举i,并且由于j的值符合等差级数,可以通过“首项加末项乘以项数除以二”快速求得j。
        所有,sum[i] = (n-i+1),sum[j] = ( (m-1+1)+(m-j+1) ) * j / 2 ; ans += sum[i]*sum[j],即得。
     
    #include<cstdio>
    #include<iostream>
    #include<cstring>
    #include<algorithm>
    #define ll long long//BNUOJ似乎不识别__int64;
    using namespace std;
    int main(){
        ll n,m,k;
        while(~scanf("%I64d%I64d%I64d",&n,&m,&k)){
            k /= 2;
            ll ans = 0;
            ll nn = min(n,k-1);
            for(ll i = 1; i <= nn; i++){
                ll j = min(m,k - i);
                ans += (n - i + 1)*(m + m - j + 1)*j/2;
            }
            cout<<ans<<endl;//printf("%I64d
    ",ans); is WA ,I don't konw why!
        }
        return 0;
    }
  • 相关阅读:
    jsp <img src="“> src 相对路径的问题
    记一次Intellij-IDEA配置JDK1.8,支持Lambda新特性
    centOS6.5 查看 启动 关闭防火墙
    java设计模式之--工厂方法模式
    BlockingQueue之---ArrayBlockingQueue
    两个线程,一个为123456,一个为ABCDEF、交替打印出1A2B3C...
    JUC之---超好用的阻塞锁
    JUC之---读写锁
    java设计模式之--代理模式
    java设计模式之--线程安全的单例模式
  • 原文地址:https://www.cnblogs.com/ACMessi/p/4852668.html
Copyright © 2011-2022 走看看