zoukankan      html  css  js  c++  java
  • Dima and Lisa

    Dima and Lisa

    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Dima loves representing an odd number as the sum of multiple primes, and Lisa loves it when there are at most three primes. Help them to represent the given number as the sum of at most than three primes.

    More formally, you are given an odd numer n. Find a set of numbers pi (1 ≤ i ≤ k), such that

    1. 1 ≤ k ≤ 3
    2. pi is a prime

    The numbers pi do not necessarily have to be distinct. It is guaranteed that at least one possible solution exists.

    Input

    The single line contains an odd number n (3 ≤ n < 109).

    Output

    In the first line print k (1 ≤ k ≤ 3), showing how many numbers are in the representation you found.

    In the second line print numbers pi in any order. If there are multiple possible solutions, you can print any of them.

    Sample test(s)
    input
    27
    output
    3
    5 11 11
    Note

    A prime is an integer strictly larger than one that is divisible only by one and by itself.

     哥德巴赫猜想:

        两个素数差距不超过800;

    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<cmath>
    using namespace std;
    bool is_prime(int n){
        for(int i = 2; i <= sqrt(n); i++){
            if(n%i == 0)return 0;
        }
        return 1;
    }
    int main(){
        int n;
        scanf("%d",&n);
        if(is_prime(n))
            printf("1
    %d",n);
        else if(is_prime(n-2))
            printf("2
    %d 2",n-2);
        else if(is_prime(n-4))
            printf("3
    %d 2 2",n-4);
        else {
            for(int i = 3;; i++){
                int m = n - i;
                for(int j = 3; j < m; j += 2){
                    if(is_prime(m-j) && is_prime(j)){
                        printf("3
    %d %d %d",m-j,j,i);
                        return 0;
                    }
                }
            }
        }
        return 0;
    }
  • 相关阅读:
    如何高效查看 Docker 日志
    linux:有效使用docker logs查看日志
    FFmpeg命令行工具学习(一):查看媒体文件头信息工具ffprobe
    性能调优
    【禅道】Windows本地安装禅道2.0.9
    Handle
    Operate the elements
    Web功能测试常用方法
    Drop down box selection(Select)
    Iframe
  • 原文地址:https://www.cnblogs.com/ACMessi/p/4862462.html
Copyright © 2011-2022 走看看