zoukankan      html  css  js  c++  java
  • PAT-1126. Eulerian Path (25)

    1126. Eulerian Path (25)

    时间限制
    300 ms
    内存限制
    65536 kB
    代码长度限制
    16000 B
    判题程序
    Standard
    作者
    CHEN, Yue

    In graph theory, an Eulerian path is a path in a graph which visits every edge exactly once. Similarly, an Eulerian circuit is an Eulerian path which starts and ends on the same vertex. They were first discussed by Leonhard Euler while solving the famous Seven Bridges of Konigsberg problem in 1736. It has been proven that connected graphs with all vertices of even degree have an Eulerian circuit, and such graphs are called Eulerian. If there are exactly two vertices of odd degree, all Eulerian paths start at one of them and end at the other. A graph that has an Eulerian path but not an Eulerian circuit is called semi-Eulerian. (Cited from https://en.wikipedia.org/wiki/Eulerian_path)

    Given an undirected graph, you are supposed to tell if it is Eulerian, semi-Eulerian, or non-Eulerian.

    Input Specification:

    Each input file contains one test case. Each case starts with a line containing 2 numbers N (<= 500), and M, which are the total number of vertices, and the number of edges, respectively. Then M lines follow, each describes an edge by giving the two ends of the edge (the vertices are numbered from 1 to N).

    Output Specification:

    For each test case, first print in a line the degrees of the vertices in ascending order of their indices. Then in the next line print your conclusion about the graph -- either "Eulerian", "Semi-Eulerian", or "Non-Eulerian". Note that all the numbers in the first line must be separated by exactly 1 space, and there must be no extra space at the beginning or the end of the line.

    Sample Input 1:
    7 12
    5 7
    1 2
    1 3
    2 3
    2 4
    3 4
    5 2
    7 6
    6 3
    4 5
    6 4
    5 6
    
    Sample Output 1:
    2 4 4 4 4 4 2
    Eulerian
    
    Sample Input 2:
    6 10
    1 2
    1 3
    2 3
    2 4
    3 4
    5 2
    6 3
    4 5
    6 4
    5 6
    
    Sample Output 2:
    2 4 4 4 3 3
    Semi-Eulerian
    
    Sample Input 3:
    5 8
    1 2
    2 5
    5 4
    4 1
    1 3
    3 2
    3 4
    5 3
    
    Sample Output 3:
    3 3 4 3 3
    Non-Eulerian
    

    提交代码

    这道题看起来简单,但是有一个坑就是It has been proven that connected graphs with all vertices of even degree have an Eulerian circuit。所给图必须是一个连通图,首先要dfs判断联通。

    #include <bits/stdc++.h>
    
    using namespace std;
    
    int N, M;
    int a[505];
    vector<int> edge[505];
    
    int CNT = 0;
    int flag[505];
    
    void dfs(int x) {
        flag[x] = 1;
        CNT++;
        //cout<< CNT<< endl;
        for(int i = 0; i < edge[x].size(); i++) {
            if(flag[edge[x][i]] == 0) {
                dfs(edge[x][i]);
            }
        }
    }
    
    int main()
    {
        cin>> N>> M;
        int x, y;
        for(int i = 0; i < M; i++) {
            scanf("%d%d", &x, &y);
            a[x]++;
            a[y]++;
            edge[x].push_back(y);
            edge[y].push_back(x);
        }
        int cnt = 0;
        for(int i = 1; i <= N; i++) {
            if(i != 1) printf(" ");
            printf("%d", a[i]);
            if(a[i]%2 == 1) {
                cnt++;
            }
        }
        cout<< endl;
        dfs(1);
        if(CNT != N) {
            cout<< "Non-Eulerian";
            return 0;
        }
        if(cnt == 0) {
            cout<< "Eulerian";
        }
        else if(cnt == 2) {
            cout<< "Semi-Eulerian";
        }
        else {
            cout<< "Non-Eulerian";
        }
        return 0;
    }
  • 相关阅读:
    hdu (欧拉函数+容斥原理) GCD
    UVA 11624 Fire!
    drf框架之跨域问题的解决与缓存问题
    drf框架之分页器的用法
    DRF框架之 用户角色权限与访问频率的权限设置
    DRF框架之认证组件用法(第四天)
    DRF框架之视图方法的几个封装好的模块介绍(第三天)
    DRF框架之 serializers 序列化组件
    DRF框架简介(第一天)
    BBS(第三天) 如何吧用户上传的图片文件保存到本地
  • 原文地址:https://www.cnblogs.com/ACMessi/p/8528246.html
Copyright © 2011-2022 走看看