zoukankan      html  css  js  c++  java
  • 高斯消元法

    重新学了  矩阵的逆,秩,矩阵变换,行列式,回顾了一系列的知识,总算是给弄懂了

    下面  贴下kuangbin的模板(经过一定的修改,调试过 没有任何问题了)

    #include<stdio.h>
    #include<iostream>
    #include<string.h>
    #include<math.h>
    using namespace std;
    const int MAXN=50;
    int a[MAXN][MAXN];//增广矩阵
    int x[MAXN];//解集
    bool free_x[MAXN];//标记是否是不确定的变元
    inline int gcd(int a,int b)
    {
        int t;
        while(b!=0)
        {
            t=b;
            b=a%b;
            a=t;
        }
        return a;
    }
    inline int lcm(int a,int b)
    {
        return a/gcd(a,b)*b;//先除后乘防溢出
    }

     // 高斯消元法解方程组(Gauss-Jordan elimination).(-2表示有浮点数解,但无整数解,
    //-1表示无解,0表示唯一解,大于0表示无穷解,并返回自由变元的个数)
    //有equ个方程,var个变元。增广矩阵行数为equ,分别为0到equ-1,列数为var+1,分别为0到var.
    int Gauss(int equ,int var)
    {
        int i,j,k;
        int max_r;// 当前这列绝对值最大的行.
        int col;//当前处理的列
        int ta,tb;
        int LCM;
        int temp;
        int free_x_num;
        int free_index;

    for(int i=0;i<=var;i++)
        {
            x[i]=0;
            free_x[i]=true;
        }

    //转换为阶梯阵.
        col=0; // 当前处理的列
        for(k = 0;k < equ && col < var;k++,col++)
        {// 枚举当前处理的行.
    // 找到该col列元素绝对值最大的那行与第k行交换.(为了在除法时减小误差)
            max_r=k;
            for(i=k+1;i<equ;i++)
            {
                if(fabs(a[i][col])>fabs(a[max_r][col])) max_r=i;
            }
            if(max_r!=k)
            {// 与第k行交换.
                for(j=k;j<var+1;j++) swap(a[k][j],a[max_r][j]);
            }
            if(a[k][col]==0)
            {// 说明该col列第k行以下全是0了,则处理当前行的下一列.
                k--;
                continue;
            }
            for(i=k+1;i<equ;i++)
            {// 枚举要删去的行.
                if(a[i][col]!=0)
                {
                    LCM = lcm(fabs(a[i][col]),fabs(a[k][col]));
                    ta = LCM/fabs(a[i][col]);
                    tb = LCM/fabs(a[k][col]);
                    if(a[i][col]*a[k][col]<0)tb=-tb;//异号的情况是相加
                    for(j=col;j<var+1;j++)
                    {
                        a[i][j] = a[i][j]*ta-a[k][j]*tb;
                    }
                }
            }
        }

      //  Debug();

    // 1. 无解的情况: 化简的增广阵中存在(0, 0, ..., a)这样的行(a != 0)
        for (i = k; i < equ; i++)
        { // 对于无穷解来说,如果要判断哪些是自由变元,那么初等行变换中的交换就会影响,则要记录交换.
            if (a[i][col] != 0) return -1;
        }
        // 2. 无穷解的情况: 在var * (var + 1)的增广阵中出现(0, 0, ..., 0)这样的行,即说明没有形成严格的上三角阵.
        // 且出现的行数即为自由变元的个数.
        if (k < var)
        {
            // 首先,自由变元有var - k个,即不确定的变元至少有var - k个.
            for (i = k - 1; i >= 0; i--)
            {
                // 第i行一定不会是(0, 0, ..., 0)的情况,因为这样的行是在第k行到第equ行.
                // 同样,第i行一定不会是(0, 0, ..., a), a != 0的情况,这样的无解的.
                free_x_num = 0; // 用于判断该行中的不确定的变元的个数,如果超过1个,则无法求解,它们仍然为不确定的变元.
                for (j = 0; j < var; j++)
                {
                    if (a[i][j] != 0 && free_x[j]) free_x_num++, free_index = j;
                }
                if (free_x_num > 1) continue; // 无法求解出确定的变元.
                // 说明就只有一个不确定的变元free_index,那么可以求解出该变元,且该变元是确定的.
                temp = a[i][var];
                for (j = 0; j < var; j++)
                {
                    if (a[i][j] != 0 && j != free_index) temp -= a[i][j] * x[j];
                }
                x[free_index] = temp / a[i][free_index]; // 求出该变元.
                free_x[free_index] = 0; // 该变元是确定的.
            }
            return var - k; // 自由变元有var - k个.
        }
        // 3. 唯一解的情况: 在var * (var + 1)的增广阵中形成严格的上三角阵.
        // 计算出Xn-1, Xn-2 ... X0.
        for (i = var - 1; i >= 0; i--)
        {
            temp = a[i][var];
            for (j = i + 1; j < var; j++)
            {
                if (a[i][j] != 0) temp -= a[i][j] * x[j];
            }
            if (temp % a[i][i] != 0) return -2; // 说明有浮点数解,但无整数解.
            x[i] = temp / a[i][i];
        }
        return 0;

    }
    int main(void)
    {
        int i, j;
        int equ,var;
        while (scanf("%d %d", &equ, &var) != EOF)
        {
            memset(a, 0, sizeof(a));
            for (i = 0; i < equ; i++)
            {
                for (j = 0; j < var + 1; j++)
                {
                    scanf("%d", &a[i][j]);
                }
            }
    //        Debug();
            int free_num = Gauss(equ,var);
            if (free_num == -1) printf("无解! ");
       else if (free_num == -2) printf("有浮点数解,无整数解! ");
            else if (free_num > 0)
            {
                printf("无穷多解! 自由变元个数为%d ", free_num);
                for (i = 0; i < var; i++)
                {
                    if (free_x[i]) printf("x%d 是不确定的 ", i + 1);
                    else printf("x%d: %d ", i + 1, x[i]);
                }
            }
            else
            {
                for (i = 0; i < var; i++)
                {
                    printf("x%d: %d ", i + 1, x[i]);
                }
            }
            printf(" ");
        }
        return 0;
    }

  • 相关阅读:
    JavaScript 基础(三)
    2015-10-15 第十四节课 补充CSS一些特殊选择器
    2015-09-29 第八节课 JavaScript 基础(二)(js语句:条件、循环)
    2015-09-28 第七节课JavaScript 基础(一) (js简介、声明变量、数据类型)
    2015 09-23 第五节课程(css:仿站及常见代码用法)
    【小练习2】如何制作“表格”
    51nod-1627 瞬间移动(组合数+逆元)
    POJ-3450 Corporate Identity (KMP+后缀数组)
    POJ-2406 Power Strings(KMP)
    CSU-1632 Repeated Substrings (后缀数组)
  • 原文地址:https://www.cnblogs.com/ACWQYYY/p/4565787.html
Copyright © 2011-2022 走看看