zoukankan      html  css  js  c++  java
  • 【数据结构】并查集

      数据结构中经常考察的一个点就是并查集。

      并查集(Union-find Sets)是一种非常精巧而实用的数据结构,它主要用于处理一些不相交集合的合并问题。
      百度百科上的定义是这样的:并查集,在一些有N个元素的集合应用问题中,我们通常是在开始时让每个元素构成一个单元素的集合,然后按一定顺序将属于同一组的元素所在的集合合并,其间要反复查找一个元素在哪个集合中。这一类问题近几年来反复出现在信息学的国际国内赛题中,其特点是看似并不复杂,但数据量极大,若用正常的数据结构来描述的话,往往在空间上过大,计算机无法承受;即使在空间上勉强通过,运行的时间复杂度也极高,根本就不可能在比赛规定的运行时间(1~3秒)内计算出试题需要的结果,只能用并查集来描述。
      但是百科上的语言文字往往容易让人失去了兴趣,所以接下来我将以比较通俗易懂的语言来描述一下并查集,希望大家能够有所收获


    现在我们来看一道十分明显的并查集问题:


    【问题描述】
      一家公司有n名员工,刚开始每个人单独构成一个工作团队。
      有时一项工作仅凭一个人或一个团队难以完成,所以公司会让某两个人所在的团队合并。
      但有的工作属于闷声大发财类型的,不适合多人做,所以公司有时也会让一个人从他当前所在的团队中分离出来,构成单独的团队。
      公司也要对当前团队的情况进行了解,所以他们也会询问一些问题,比如某两个人是否属于同一工作团队,某个人所在的团队有多少个人,或者当前一共有多少个工作团队。
      作为该公司的软件服务商,你的任务便是实现一个实时的操作和查询系统。
    【输入格式】
      每个测试点第一行有两个正整数n,m,表示员工数和公司的指令数。
      接下来m行,每行的格式为下列所述之一:
      1 u v,表示将第u个人与第v个人所在的团队合并,如果两个人所在团队相同,则不执行任何操作。
      2 w,表示使第w个人从当前的团队中分离出来,如果第w个人不在任何多人团队中,则不执行任何操作。
      3 x y,表示询问x,y两个人是否在同一个工作团队,是的话回答Yes,否则回答No。
      4 z,表示询问第z个人所在的工作团队一共有多少个人。
      5,询问当前一共有多少个工作团队。
    【输出格式】
      对每个询问输出一行相应的值表示答案。
    【样例输入】
      3 11
      1 1 2
      3 2 3
      4 2
      1 2 3
      3 2 3
      4 2
      5
      2 2
      3 2 3
      4 2
      5
    【样例输出】
      No
      2
      Yes
      3
      1
      No
      1
      2
    【数据规模】
      Easy:对于30%的数据,不存在2,4,5操作。
      Normal:对于70%的数据,不存在2操作。
      Hard:对于100%的数据,均有1 ≤ n ≤ 50000,1 ≤ m ≤ 100000


    对于我们这种刚刚接触并查集的新手来说显然是有些艰难的,所以我们现在就必须要了解一下并查集是如何工作的。

      并查集首先就是先把自己指向自己做自己的父亲,等到后面找别人来做自己的父亲,一层一层递归上去,然后两个父亲互相认识一下就行了。
    我们用通俗易懂的江湖语言来描述一遍吧!
    【通俗易懂】:
      在金庸小说的世界里,门派很多,经常会发生一些争斗,而且一般来说一个大的势力首先都需要自己出头来做老大,所以这个时候你自己的这个门派的老大就是你自己,即father[you]=you
      后来,在你冒险的过程中你开始结识了一群很牛逼的好友,你觉得应该把他们拉到自己的门下,那么这个时候你就劝说他们把他们的门派老大指向你,意思就是说你是他们的老大,即father[别人]=you
      但是你只是认识了这些比你低一级别的属下,你属下的属下和他属下的属下都互相不认识啊,这个时候就很容易起争端还不知道是自己人,互相打来打去(怎么这么傻),万一有一天在小树林里碰面,A、B二人都不知道对方是敌是友,如果要一级一级上报上去,显然是可以做到的,但是其中所耗费的时间必然是我们所比较不愿意接受的,所以我们希望我们属下的属下,他的老板就是我,意思就是说他可以直接认识我,并且接触到我,这样的话两人看到,就可能说:“在下是不甜薄荷叶的属下”,“诶,我是不甜薄荷叶他属下很甜薄荷叶的属下,我们两个是朋友”然后两个人就手拉手一起走上人生巅峰了。。。。。这里的代码转换一下即:判断一下是敌是友(int x=find(A),y=find(B)解释:x是A的顶头上司,y是B的顶头上司)如果不认识,那么认识一个朋友就是一个保障嘛,那么这个时候:father[x]=y,但是你会发现如果这样,一层一层地上报岂不是很麻烦,那么你就可以直接father[A]=y就可以啦,这就是一个非常简单的路径压缩啦

      这样其实我们就把并查集的工作原理讲完了,现在我们用一些短小的代码来实现一下并查集。
    CODE1://初始化每一个节点,一开始我们应该让所有节点都自己做老大,自己指向自己

    1 void initialise(){
    2   for(int i=1;i<=n;i++)
    3     father[i]=i;
    4 }

    CODE2://找父节点的操作,一般都是可以直接用递归就可以找到,也可以用while循环来实现

    1 int find(int x){
    2   if(x!=father[x])father[x]=find(father[x]);
    3   return father[x];
    4 }

    CODE3://合并两个节点的操作,直接把自己的父节点指向对方就可以了,但是这样会存在一定的缺点,我们下面再继续陈述

    1 void unionn(int x,int y){
    2     x=find_fa(x);
    3     y=find_fa(y);
    4     father[y]=x;
    5     return;
    6 }

    在这样的情况下我们的并查集其实就可以解决啦。

    然后我们再回到我们最初的那一道题目,基本就是裸的并查集啦。

    但是这里面的难点就是在于把一个点分离出来。

    那么怎么做呢?其实我们可以考虑把这个点假装还在原来的集合内,但是实际上它已经不在了,我们只需要一个stand标志数组,表示我当前的这个节点实际上到底在哪个节点内就可以啦

      在树结构的并查集中,我们要使一个点从树中分离出来是一件很麻烦的事。为了保持树结构的完整,对于每次分离操作,我们为相应的点u新建立一个节点,表示独立出来的u,而原来的节点表示旧的u节点,它起到连接节点与保持树结构的作用,在此之后对节点u的操作均在新建立的节点上进行即可。注意分离的时候要维护好原来的集合的size值和集合数。
      这样我们这一题也就结束啦!!!

    CODE4:

     1 #include<bits/stdc++.h>
     2 using namespace std;
     3 int father[1000002],size[1000002],n,m,u,v,w,peo1,peo2,peo3,ans=0,tot,stand[1000002];
     4 int find(int x){
     5   if(x!=father[x])father[x]=find(father[x]);
     6   return father[x];
     7 }
     8 void unionn(int x,int y){
     9   int r1=find(stand[x]);
    10   int r2=find(stand[y]);
    11   if(r1==r2)return;
    12   else {
    13     size[r1]+=size[r2];
    14     size[r2]=0;
    15     father[r2]=r1;
    16     ans--;
    17   }
    18   return;
    19 }
    20 void break_up(int x){
    21   int fin=find(stand[x]);
    22   if(size[fin]<=1)return;
    23   else {
    24     tot++;
    25     stand[x]=tot;
    26     father[tot]=stand[x];
    27     size[fin]--;size[tot]=1;
    28     ans++;
    29   }
    30   return;
    31 }
    32 void work(){
    33   scanf("%d%d",&n,&m);
    34   tot=ans=n;
    35   for(int i=1;i<=n;i++){
    36     father[i]=i;
    37     size[i]=1;
    38     stand[i]=i;
    39   }
    40   int temp;
    41   for(int i=1;i<=m;i++){
    42     scanf("%d",&temp);
    43     switch (temp){
    44         case 1:{
    45           scanf("%d%d",&u,&v);
    46           unionn(u,v);
    47           break;
    48         }
    49         case 2:{
    50           scanf("%d",&w);
    51           break_up(w);
    52           break;
    53         }
    54         case 3:{
    55           scanf("%d%d",&peo1,&peo2);
    56           if(find(stand[peo1])==find(stand[peo2]))printf("Yes
    ");
    57             else printf("No
    ");
    58           break;
    59         }
    60         case 4:{
    61           int num;
    62           scanf("%d",&peo3);
    63           num=find(stand[peo3]);
    64           printf("%d
    ",size[num]);
    65           break;
    66         }
    67         default:{
    68           printf("%d
    ",ans);
    69           break;
    70         }
    71     }
    72   }
    73   return;
    74 }
    75 int main(){
    76   work();
    77   return 0;    
    78 }

    现在我们再回到我刚刚留下的那个坑(为什么会有缺点呢)?

    我们来看一下下面的图片:假设一直父节点相互连接的结果就是这样的,就会导致说查询的长度会过长,时间的代价会很高(用江湖话来说就是我问一件事情都要一层一层上报,等到花儿都谢了!!!:


    那如果要S和T连起来,那么显然是右边的那一图是更优的方式,查找的速率是几乎为O(1)的,在合并的过程中就已经把路径给压缩了一下

    右边的那种操作实际上就是路径压缩(这里不再详细介绍)

    我们以一张参考图片作为结尾:

    希望这篇看起来非常水的博客对您有所帮助!!!

  • 相关阅读:
    python链接Hive
    input type=file输入框
    JQ剪辑图片插件,适用于移动端和PC端
    随笔
    Js获取当前日期时间及其它操作
    SQL中like语句的索引使用
    MS SQLSERVER 数据库表存储结构
    Jdom 解析 XML
    sqlserver 查询时,datetime的相关函数
    xml转换String输出
  • 原文地址:https://www.cnblogs.com/ACworker/p/7228920.html
Copyright © 2011-2022 走看看