zoukankan      html  css  js  c++  java
  • [容斥+NTT+启发式合并] ICPC2021上海站B题 Strange_Permutations

    比赛时推出来了没写,血亏,赛后补上。



    #include <bits/stdc++.h>
    using namespace std;
    
    #define LL long long
    const int maxn = 2100000;
    
    LL qpow(LL b, LL n, LL MOD) {
        if (MOD == 1) return 0;
        LL x = 1, Power = b % MOD;
        while (n) {
            if (n & 1) x = x * Power % MOD;
            Power = Power * Power % MOD;
            n >>= 1;
        }
        return x;
    }
    
    const LL P = 998244353, G = 3, Gi = 332748118;
    
    namespace Poly {
        int r[maxn];
        int L, limit;
    
        LL pinv(LL x) { return qpow(x, P - 2, P); }
    
        //快速数论变换 type=1:正变换 type=-1:逆变换
        void NTT(LL* A, int type) {
            for (int i = 0; i < limit; i++)
                if (i < r[i]) swap(A[i], A[r[i]]);
            for (int mid = 1; mid < limit; mid <<= 1) {
                LL Wn = qpow(type == 1 ? G : Gi, (P - 1) / (mid << 1), P);
                for (int j = 0; j < limit; j += (mid << 1)) {
                    LL w = 1;
                    for (int k = 0; k < mid; k++, w = (w * Wn) % P) {
                        int x = A[j + k], y = w * A[j + k + mid] % P;
                        A[j + k] = (x + y) % P;
                        A[j + k + mid] = (x - y + P) % P;
                    }
                }
            }
            if (type == 1) return;
            LL inv_limit = pinv(limit);
            for (int i = 0; i < limit; ++i)
                A[i] = A[i] * inv_limit % P;
        }
    
        //多项式卷积 a(x): N-1次多项式 b(x): M-1次多项式
        void Conv(LL* a, int N, LL* b, LL M, LL* c) {
            L = 0; limit = 1;
            while (limit <= N + M) limit <<= 1, L++;
            for (int i = 0; i < limit; i++) r[i] = (r[i >> 1] >> 1) | ((i & 1) << (L - 1));
            NTT(a, 1); NTT(b, 1);
            for (int i = 0; i < limit; i++) c[i] = a[i] * b[i] % P;
            NTT(c, -1);
        }
    }
    
    struct node { int len, id; };
    struct cmp { bool operator()(const node& a, const node& b) { return a.len > b.len; } };
    priority_queue<node, vector<node>, cmp> Q;
    vector<LL> vec[100010];
    bool vis[100010];
    int nxt[100010], num[100010];
    int inv[100010], fact[100010], finv[100010];
    LL a[maxn], b[maxn];
    int n, m;
    
    void Init() {
        inv[1] = fact[0] = fact[1] = finv[0] = finv[1] = 1;
        for (int i = 2;i <= 100000;++i) {
            inv[i] = ((-1LL * (P / i) * inv[P % i]) % P + P) % P;
            fact[i] = 1LL * fact[i - 1] * i % P;
            finv[i] = 1LL * finv[i - 1] * inv[i] % P;
        }
    }
    
    LL C(LL n, LL m) {
        if (m<0 || m>n) return 0;
        return 1LL * fact[n] * finv[m] % P * finv[n - m] % P;
    }
    
    void Convolution(int u, int v) {
        int n = vec[u].size(), m = vec[v].size();
        int limit = 1;while (limit <= n + m) limit <<= 1;
        fill(a, a + limit, 0);
        fill(b, b + limit, 0);
        for (int i = 0;i < n;++i) a[i] = vec[u][i];
        for (int i = 0;i < m;++i) b[i] = vec[v][i];
        Poly::Conv(a, n, b, m, a);
        vec[u].resize(n + m - 1);
        for (int i = 0;i < n + m - 1;++i)
            vec[u][i] = a[i];
    }
    
    LL solve() {
        while (Q.size() > 1) {
            int u = Q.top().id; Q.pop();
            int v = Q.top().id; Q.pop();
            Convolution(u, v);
            Q.push((node) { (int)vec[u].size(), u });
        }
        vector<LL>& g = vec[Q.top().id];
        LL ans = 0;
        for (LL i = 0;i < g.size();++i)
            ans = (ans + ((i & 1) ? -1LL : 1LL) * fact[n - i] * g[i] % P) % P;
        ans = (ans % P + P) % P;
        return ans;
    }
    
    int main() {
        Init();
        scanf("%d", &n);
        for (int i = 1;i <= n;++i)
            scanf("%d", &nxt[i]);
        for (int i = 1;i <= n;++i) {
            if (vis[i]) continue;
            int u = i; num[++m] = 1;
            vis[u] = true;
            while (!vis[nxt[u]]) { u = nxt[u]; vis[u] = true; ++num[m]; }
        }
        for (int i = 1;i <= m;++i) {
            vec[i].resize(num[i] + 1);
            for (int j = 0;j <= num[i];++j)
                vec[i][j] = C(num[i], j);
            vec[i][num[i]] = (vec[i][num[i]] + P - 1) % P;
            Q.push((node) { (int)vec[i].size(), i });
        }
        printf("%lld\n", solve());
    
        return 0;
    }
    
  • 相关阅读:
    台阶问题,100层台阶,1,2,3步组合走完。一种有几种组合?
    idea 导入gitlab项目
    查找学生信息
    谁是你潜在的朋友
    Sort
    统计同成绩学生人数
    打印日期
    今年的第几天?
    DayOfWeek
    日期差值
  • 原文地址:https://www.cnblogs.com/AEMShana/p/15616976.html
Copyright © 2011-2022 走看看