zoukankan      html  css  js  c++  java
  • bzoj4503: 两个串

    我又变成sb了

    首先通过%可以得到一个这样的柿子:

    设s1是模版串,s2是匹配串,j表示模版串以j为起始的子串

    fj(0<j<=s1len-s2len) =sigema(i=0~s2len-1) (s2[i]-s1[j+i])^2*s2[i]

    当fj=0时j是一个解。

    既然要fft,这个加号很不爽,我们把s2翻转:

    fj(0<j<=s1len-s2len) =sigema(i=0~s2len-1) (s2[s2len-i]-s1[j+i])^2*s2[s2len-i]

    改为枚举s2len-i

    fj(0<j<=s1len-s2len) =sigema(i=0~s2len-1) (s2[i]-s1[j-i+s2len])^2*s2[i]

    这个时候发现s2len没法消啊,改一下定义,j表示以j为结尾的子串

    fj(s2len-1<=j<=s1len-1) =sigema(i=0~s2len-1) (s2[i]-s1[j-i])^2*s2[i]

    把它拆开跑三次fft就可以了。

    #include<cstdio>
    #include<iostream>
    #include<cstring>
    #include<cstdlib>
    #include<algorithm>
    #include<cmath>
    using namespace std;
    const double pi=acos(-1.0);
    
    struct complex
    {
        double r,i;
        complex(){}
        complex(double R,double I){r=R,i=I;}
        friend complex operator +(complex x,complex y){return complex(x.r+y.r,x.i+y.i);}
        friend complex operator -(complex x,complex y){return complex(x.r-y.r,x.i-y.i);}
        friend complex operator *(complex x,complex y){return complex(x.r*y.r-x.i*y.i,x.r*y.i+x.i*y.r);}
    }A[410000],B[410000],C[410000]; int Re[410000];
    void fft(complex *a,int n,int op)
    {
        for(int i=0;i<n;i++)
            if(i<Re[i])swap(a[i],a[Re[i]]);
        
        for(int i=1;i<n;i<<=1)
        {
            complex wn(cos(pi/i),sin(op*pi/i));
            for(int j=0;j<n;j+=(i<<1))
            {
                complex w(1,0);
                for(int k=0;k<i;k++,w=w*wn)
                {
                    complex t1=a[j+k],t2=a[j+k+i]*w;
                    a[j+k]=t1+t2;a[j+k+i]=t1-t2;
                }
            }
        }
    }
    
    char ss[410000];
    int s1len,s1[410000],s2len,s2[410000],f[410000];
    int aslen,as[410000];
    int main()
    {
        scanf("%s",ss);s1len=strlen(ss);
        for(int i=0;i<s1len;i++)
            if('a'<=ss[i]&&ss[i]<='z')s1[i]=ss[i]-'a'+1;
            else s1[i]=0;
        scanf("%s",ss);s2len=strlen(ss);
        for(int i=0;i<s2len;i++)
            if('a'<=ss[i]&&ss[i]<='z')s2[s2len-1-i]=ss[i]-'a'+1;
            else s2[s2len-1-i]=0;
        //~~~~~~~~~~~~~~~~~~~~read~~~~~~~~~~~~~~~~~~~~~~~~~~~    
        
        int n,m=s1len+s2len-2,L=0;
        for(n=1;n<=m;n*=2)L++;
        for(int i=1;i<=n;i++)Re[i]=(Re[i>>1]>>1)|((i&1)<<(L-1));
        memset(f,0,sizeof(f));
        //~~~~~~~~~~~~~~~~~~~~~init~~~~~~~~~~~~~~~~~~~~~~~~~~
        
        for(int i=0;i<=n;i++)
            A[i].r=s2[i]*s2[i]*s2[i],B[i].r=1;
        fft(A,n,1),fft(B,n,1);
        for(int i=0;i<n;i++)C[i]=A[i]*B[i];
        fft(C,n,-1);
        for(int i=s2len-1;i<s1len;i++)f[i]+=int(C[i].r/n+0.5);
        
        memset(A,0,sizeof(A));
        memset(B,0,sizeof(B));
        for(int i=0;i<=n;i++)
            A[i].r=2*s2[i]*s2[i],B[i].r=s1[i];
        fft(A,n,1),fft(B,n,1);
        for(int i=0;i<n;i++)C[i]=A[i]*B[i];
        fft(C,n,-1);
        for(int i=s2len-1;i<s1len;i++)f[i]-=int(C[i].r/n+0.5);
        
        memset(A,0,sizeof(A));
        memset(B,0,sizeof(B));
        for(int i=0;i<=n;i++)
            A[i].r=s2[i],B[i].r=s1[i]*s1[i];
        fft(A,n,1),fft(B,n,1);
        for(int i=0;i<n;i++)C[i]=A[i]*B[i];
        fft(C,n,-1);
        for(int i=s2len-1;i<s1len;i++)f[i]+=int(C[i].r/n+0.5);
        
        aslen=0;
        for(int i=s2len-1;i<s1len;i++)
            if(f[i]==0)as[++aslen]=i-s2len+1;
        printf("%d
    ",aslen);
        for(int i=1;i<=aslen;i++)printf("%d
    ",as[i]);
        return 0;
    }
  • 相关阅读:
    as3 变量默认值
    as3 判断移动方向
    as3 根据鼠标移动方向
    as3 XML类和XMLList类的区别
    as3 文档类判断是否被加载
    AS3获取对象类名,getDefinitionByName,getQualifiedClassName,getQualifiedSuperclassName
    as3 object与dictionary区别
    吹芯片
    stm32四种输入
    usart和uart 的区别
  • 原文地址:https://www.cnblogs.com/AKCqhzdy/p/10091986.html
Copyright © 2011-2022 走看看