这个就是指数对phi取模啊
然而欧拉定理只在(a,p)==1的情况下成立
但是有一个很强的推论,就是当x>phi(p)的时候a^x%p=a^(x%phi(p)+phi(p))成立
那么这题就秒了
线筛phi会T T_T
#include<cstdio> #include<iostream> #include<cstring> #include<cstdlib> #include<algorithm> #include<cmath> using namespace std; typedef long long LL; int quick_pow(int A,int p,int mod) { int ret=1; while(p>0) { if(p%2==1)ret=(LL)ret*A%mod; A=(LL)A*A%mod;p/=2; } return ret; } int phi(int x) { int ret=x; for(int i=2;i*i<=x;i++) if(x%i==0) { ret=ret/i*(i-1); while(x%i==0)x/=i; } if(x!=1)ret=ret/x*(x-1); return ret; } int solve(int p) { if(p==1)return 0; int pp=phi(p); return quick_pow(2,solve(pp)+pp,p); } int main() { freopen("a.in","r",stdin); freopen("a.out","w",stdout); int T; scanf("%d",&T); while(T--) { int p; scanf("%d",&p); printf("%d ",solve(p)); } return 0; }