浅谈分块:https://www.cnblogs.com/AKMer/p/10369816.html
题目传送门:https://lydsy.com/JudgeOnline/problem.php?id=2724
对于每次询问的答案,要么是中间整块的众数,要么是在两侧不完整的块出现过的数。
根据这个性质,我们可以(O(nsqrt{n}))求出每个块的众数和(sum[i][j]),表示从第一块到第(i)块内(j)出现了多少次。
然后再用区间(dp)在(O(nsqrt{n}))的复杂度内求出(mx[i][j]),表示第(i)整块到第(j)整块的众数是多少。
对于每次询问,出现在两侧不完整的块的数,我们可以暴力扫描两侧把它们出现的次数丢到一个桶里,在加上在整块里出现的次数。
然后直接找次数最多的那个数就行了。
注意相同比大小要比原大小而不是离散化之后的大小。
时间复杂度:(O(nsqrt{n}+msqrt{n}))
空间复杂度:(O(nsqrt{n}))
代码如下:
#include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn=4e4+5;
int n,m,cnt,block,top,lstans;
int v[maxn],tmp[maxn],bel[maxn],tot[maxn];
int L[205],R[205],stk[405],mx[205][205],sum[205][maxn];
int read() {
int x=0,f=1;char ch=getchar();
for(;ch<'0'||ch>'9';ch=getchar())if(ch=='-')f=-1;
for(;ch>='0'&&ch<='9';ch=getchar())x=x*10+ch-'0';
return x*f;
}
int query(int l,int r,int v) {return sum[r][v]-sum[l-1][v];}
int main() {
n=read(),m=read(),block=sqrt(n);
for(int i=1;i<=n;i++) {
tmp[i]=v[i]=read();
bel[i]=(i-1)/block+1;
if(bel[i]!=bel[i-1])
R[bel[i-1]]=i-1,L[bel[i]]=i;
}
R[bel[n]]=n,sort(tmp+1,tmp+n+1);
cnt=unique(tmp+1,tmp+n+1)-tmp-1;
for(int i=1;i<=n;i++)
v[i]=lower_bound(tmp+1,tmp+cnt+1,v[i])-tmp;
for(int i=1;i<=bel[n];i++) {
memcpy(sum[i],sum[i-1],sizeof(sum[i]));
int num2=0;
for(int j=L[i];j<=R[i];j++)
sum[i][v[j]]++;
for(int j=L[i];j<=R[i];j++) {
int num1=query(i,i,v[j]);
if((num1>num2)||(num1==num2&&tmp[v[j]]<tmp[mx[i][i]]))
mx[i][i]=v[j],num2=num1;
}
}
for(int len=2;len<=bel[n];len++)
for(int i=1;i+len-1<=bel[n];i++) {
int j=i+len-1,res=mx[i][j-1],num2=query(i,j,res);
for(int k=L[j];k<=R[j];k++) {
int num1=query(i,j,v[k]);
if((num1>num2)||(num1==num2&&tmp[v[k]]<tmp[res]))
res=v[k],num2=num1;
}
mx[i][j]=res;
}
while(m--) {
int l=read(),r=read(),res=0,num2=0;
l=(l+lstans-1)%n+1,r=(r+lstans-1)%n+1;
if(r<l)swap(l,r);
if(bel[l]==bel[r]) {
for(int i=l;i<=r;i++)
if((++tot[v[i]])==1)stk[++top]=v[i];
}
else {
for(int i=l;i<=R[bel[l]];i++)
if((++tot[v[i]])==1) {
stk[++top]=v[i];
tot[v[i]]+=query(bel[l]+1,bel[r]-1,v[i]);
}
for(int i=L[bel[r]];i<=r;i++)
if((++tot[v[i]])==1) {
stk[++top]=v[i];
tot[v[i]]+=query(bel[l]+1,bel[r]-1,v[i]);
}
int tmp=mx[bel[l]+1][bel[r]-1];
if(!tot[tmp]) {
stk[++top]=tmp;
tot[tmp]=query(bel[l]+1,bel[r]-1,tmp);
}
}
for(int i=1;i<=top;i++) {
int num1=tot[stk[i]];
if((num1>num2)||(num1==num2&&tmp[stk[i]]<tmp[res]))
res=stk[i],num2=num1;
}
while(top)tot[stk[top--]]=0;
lstans=tmp[res];
printf("%d
",lstans);
}
return 0;
}