zoukankan      html  css  js  c++  java
  • HDU 3467 (求五个圆相交面积) Song of the Siren

    还没开始写题解我就已经内牛满面了,从晚饭搞到现在,WA得我都快哭了呢

    题意:

    在DotA中,你现在1V5,但是你的英雄有一个半径为r的眩晕技能,已知敌方五个英雄的坐标,问能否将该技能投放到一个合适的位置,使得对面所有敌人都被眩晕,这样你就有机会能够逃脱。

    分析:

    对于敌方一个英雄来说,如果技能的投放位置距离他不超过r则满足要求,那么如果要眩晕所有的敌人,可行区域就是以五人为中心的半径为r的圆的相交区域。

    现在问题就转化为求五个半径相同的圆的相交部分的面积,如果只有一个点则输出该点。

    在求交之前,我们可以先去除

    我们将所交区域划分为一个凸多边形和周围若干个弓形。

    弓形在两圆相交时便能求出,而且还能求出两圆的交点(注意两个交点p1,p2一定要按照逆时针的顺序,因为叉积有正负),也就是凸多边的顶点,其面积形直接用叉积来计算。

    给两个传送门,认真学习一下吧:

    http://www.cnblogs.com/oyking/archive/2013/11/14/3424517.html

    对于枚举一个圆求与另外四个圆相交区域,是按照极角的区间求交集,详见:

    http://hi.baidu.com/aekdycoin/item/7618bee9f473ed3e86d9ded6

    五个圆是否交于一点还要另行判断

    最后再感慨一下做计算几何说多了都是泪啊

      1 #include <cstdio>
      2 #include <cmath>
      3 #include <cstring>
      4 #include <algorithm>
      5 
      6 const int maxn = 10;
      7 const double eps = 1e-8;
      8 const double PI = acos(-1.0);
      9 
     10 int dcmp(double x)
     11 { return (x > eps) - (x < -eps); }
     12 
     13 struct Point
     14 {
     15     double x, y;
     16     Point(double x=0, double y=0):x(x), y(y) {}
     17     void read() { scanf("%lf%lf", &x, &y); }
     18 };
     19 typedef Point Vector;
     20 Point operator + (const Vector& a, const Vector& b)
     21 { return Point(a.x+b.x, a.y+b.y); }
     22 Point operator - (const Vector& a, const Vector& b)
     23 { return Point(a.x-b.x, a.y-b.y); }
     24 Vector operator * (const Vector& a, double p)
     25 { return Point(a.x*p, a.y*p); }
     26 Vector operator / (const Vector& a, double p)
     27 { return Point(a.x/p, a.y/p); }
     28 bool operator == (const Point& a, const Point& b)
     29 { return dcmp(a.x-b.x) == 0 && dcmp(a.y-b.y) == 0; }
     30 
     31 double Dot(const Vector& a, const Vector& b)
     32 { return a.x*b.x + a.y*b.y; }
     33 double Cross(const Vector& a, const Vector& b)
     34 { return a.x*b.y - a.y*b.x; }
     35 double Length(const Vector& a)
     36 { return sqrt(Dot(a, a)); }
     37 Vector unit(const Vector& a)
     38 { return a / Length(a); }
     39 Vector Normal(const Vector& a)
     40 {
     41     double l = Length(a);
     42     return Vector(-a.y/l, a.x/l);
     43 }
     44 double Angle(const Vector& a)
     45 { return atan2(a.y, a.x); }
     46 
     47 Point Rotate(const Point& p, double angle, const Point& o = Point(0, 0))
     48 {
     49     Vector t = p - o;
     50     t = Vector(t.x*cos(angle)-t.y*sin(angle), t.x*sin(angle)+t.y*cos(angle));
     51     return t + o;
     52 }
     53 
     54 struct Region
     55 {
     56     double st, ed;
     57     Region(double s=0, double e=0):st(s), ed(e) {}
     58 };
     59 
     60 struct Circle
     61 {
     62     Point c;
     63     double r;
     64     Circle() {}
     65     Circle(Point c, double r):c(c), r(r) {}
     66     
     67     void read() { c.read(); scanf("%lf", &r); }
     68     
     69     double area() const { return PI * r * r; }
     70     
     71     bool contain(const Circle& rhs) const
     72     { return dcmp(Length(c-rhs.c) + rhs.r - r) <= 0; }
     73     
     74     bool contain(const Point& p) const
     75     { return dcmp(Length(c-p) - r) <= 0; }
     76     
     77     bool intersect(const Circle& rhs) const
     78     { return dcmp(Length(c-rhs.c) - r - rhs.r) < 0; }
     79     
     80     bool tangency(const Circle& rhs) const
     81     { return dcmp(Length(c-rhs.c) - r - rhs.r) == 0; }
     82     
     83     Point get_point(double ang) const
     84     { return Point(c.x + r * cos(ang), c.y + r * sin(ang)); }
     85 };
     86 
     87 void IntersectionPoint(const Circle& c1, const Circle& c2, Point& p1, Point& p2)
     88 {
     89     double d = Length(c1.c - c2.c);
     90     double l = (c1.r*c1.r + d*d - c2.r*c2.r) / (2 * d);
     91     double h = sqrt(c1.r*c1.r - l*l);
     92     Point mid = c1.c + unit(c2.c-c1.c) * l;
     93     Vector t = Normal(c2.c - c1.c) * h;
     94     p1 = mid + t;
     95     p2 = mid - t;
     96 }
     97 
     98 double IntersectionArea(const Circle& c1, const Circle& c2)
     99 {
    100     double area = 0.0;
    101     const Circle& M = c1.r > c2.r ? c1 : c2;
    102     const Circle& N = c1.r > c2.r ? c2 : c1;
    103     double d = Length(c1.c-c2.c);
    104     
    105     if(d < M.r + N.r && d > M.r - N.r)
    106     {
    107         double Alpha = 2.0 * acos((M.r*M.r + d*d - N.r*N.r) / (2 * M.r * d));
    108         double Beta  = 2.0 * acos((N.r*N.r + d*d - M.r*M.r) / (2 * N.r * d));
    109         area = ( M.r*M.r*(Alpha - sin(Alpha)) + N.r*N.r*(Beta - sin(Beta)) ) / 2.0;
    110     }
    111     else if(d <= M.r - N.r) area = N.area();
    112     
    113     return area;
    114 }
    115 
    116 struct Region_vector
    117 {
    118     int n;
    119     Region v[5];
    120     void clear() { n = 0; }
    121     void add(const Region& r) { v[n++] = r; }
    122 } *last, *cur;
    123 
    124 Circle cir[maxn];
    125 bool del[maxn];
    126 double r;
    127 int n = 5;
    128 
    129 bool IsOnlyOnePoint()
    130 {
    131     bool flag = false;
    132     Point t;
    133     for(int i = 0; i < n; ++i)
    134     {
    135         for(int j = i + 1; j < n; ++j)
    136         {
    137             if(cir[i].tangency(cir[j]))
    138             {
    139                 t = (cir[i].c + cir[j].c) / 2;
    140                 flag = true;
    141                 break;
    142             }
    143         }
    144     }
    145     
    146     if(!flag) return false;
    147     for(int i = 0; i < n; ++i)
    148         if(!cir[i].contain(t)) return false;
    149     
    150     printf("Only the point (%.2f, %.2f) is for victory.
    ", t.x, t.y);
    151     return true;
    152 }
    153 
    154 bool solve()
    155 {
    156     if(IsOnlyOnePoint()) return true;
    157     memset(del, false, sizeof(del));
    158     
    159     for(int i = 0; i < n; ++i)
    160         for(int j = 0; j < n; ++j)
    161         {
    162             if(del[j] || i == j) continue;
    163             if(cir[i].contain(cir[j]))
    164             {
    165                 del[i] = true;
    166                 break;
    167             }
    168         }
    169         
    170     double ans = 0.0;
    171     for(int i = 0; i < n; ++i)
    172     {
    173         if(del[i]) continue;
    174         last->clear();
    175         Point p1, p2;
    176         for(int j = 0; j < n; ++j)
    177         {
    178             if(del[j] || i == j) continue;
    179             if(!cir[i].intersect(cir[j])) return false;
    180             cur->clear();
    181             IntersectionPoint(cir[i], cir[j], p1, p2);
    182             double rs = Angle(p2 - cir[i].c);
    183             double rt = Angle(p1 - cir[i].c);
    184             if(dcmp(rs) < 0) rs += 2 * PI;
    185             if(dcmp(rt) < 0) rt += 2 * PI;
    186             if(last->n == 0)
    187             {
    188                 if(dcmp(rt - rs) < 0)
    189                 {
    190                     cur->add(Region(rs, 2*PI));
    191                     cur->add(Region(0,  rt));
    192                 }
    193                 else cur->add(Region(rs, rt));
    194             }
    195             else
    196             {
    197                 for(int k = 0; k < last->n; ++k)
    198                 {
    199                     if(dcmp(rt - rs) < 0)
    200                     {
    201                         if(dcmp(last->v[k].st-rt) >= 0 && dcmp(last->v[k].ed-rs) <= 0) continue;
    202                         if(dcmp(last->v[k].st-rt) < 0) cur->add(Region(last->v[k].st, std::min(last->v[k].ed, rt)));
    203                         if(dcmp(last->v[k].ed-rs) > 0) cur->add(Region(std::max(last->v[k].st, rs), last->v[k].ed));
    204                     }
    205                     else
    206                     {
    207                         if(dcmp(rt-last->v[k].st <= 0 || dcmp(rs-last->v[k].ed) >= 0)) continue;
    208                         cur->add(Region(std::max(rs, last->v[k].st), std::min(rt, last->v[k].ed)));
    209                     }
    210                 }
    211             }
    212             std::swap(cur, last);
    213             if(last->n == 0) break;
    214         }
    215         for(int j = 0; j < last->n; ++j)
    216         {
    217             p1 = cir[i].get_point(last->v[j].st);
    218             p2 = cir[i].get_point(last->v[j].ed);
    219             ans += Cross(p1, p2) / 2;
    220             double ang = last->v[j].ed - last->v[j].st;
    221             ans += cir[i].r * cir[i].r * (ang - sin(ang)) / 2;
    222         }
    223     }
    224     
    225     if(dcmp(ans) == 0) return false;
    226     printf("The total possible area is %.2f.
    ", ans);
    227     return true;
    228 }
    229 
    230 int main(void)
    231 {
    232     //freopen("3467in.txt", "r", stdin);
    233     last = new Region_vector;
    234     cur =  new Region_vector;
    235     while(scanf("%lf", &r) == 1)
    236     {
    237         Point t;
    238         for(int i = 0; i < n; ++i)
    239         {
    240             t.read();
    241             cir[i] = Circle(t, r);
    242         }
    243         if(!solve())
    244             puts("Poor iSea, maybe 2012 is coming!");
    245     }
    246     
    247     return 0;
    248 }
    代码君
  • 相关阅读:
    AtomicInteger原理分析
    packageinfo.java介绍
    SpringBoot 日志、配置文件、接口数据脱敏
    Gulp自动化构建分析
    RPC本质思考
    ES6 之 let 与 const
    Java属性转换工具分析
    AMQP协议模型及相关组件介绍
    Spring Bean生命周期分析
    PHP 脚本后台执行
  • 原文地址:https://www.cnblogs.com/AOQNRMGYXLMV/p/4127571.html
Copyright © 2011-2022 走看看