这题写起来真累。。
名次树就是多了一个附加信息记录以该节点为根的树的总结点的个数,由于BST的性质再根据这个附加信息,我们可以很容易找到这棵树中第k大的值是多少。
所以在这道题中用一棵名次树来维护一个连通分量。
由于图中添边比较方便,用并查集来表示连通分量就好了,但是删边不太容易实现。
所以,先把所有的边删去,然后逆序执行命令。当然,C命令也要发生一些变化,比如说顺序的情况是从a变成b,那么逆序执行的话应该就是从b变成a。
最后两棵树的合并就是启发式合并,把节点数少的数并到节点数多的数里去。
1 #include <cstdio> 2 #include <cstring> 3 #include <cstdlib> 4 using namespace std; 5 6 struct Node 7 { 8 Node* ch[2]; 9 int r, v, s; 10 Node(int v):v(v) { ch[0] = ch[1] = NULL; s = 1; r = rand(); } 11 int cmp(int x) 12 { 13 if(x == v) return -1; 14 return x < v ? 0 : 1; 15 } 16 void maintain() 17 { 18 s = 1; 19 if(ch[0] != NULL) s += ch[0]->s; 20 if(ch[1] != NULL) s += ch[1]->s; 21 } 22 }; 23 24 void rotate(Node* &o, int d) 25 { 26 Node* k = o->ch[d^1]; o->ch[d^1] = k->ch[d]; k->ch[d] = o; 27 o->maintain(); k->maintain(); o = k; 28 } 29 30 void insert(Node* &o, int x) 31 { 32 if(o == NULL) o = new Node(x); 33 else 34 { 35 int d = x < o->v ? 0 : 1; 36 insert(o->ch[d], x); if(o->ch[d]->r > o->r) rotate(o, d^1); 37 } 38 o->maintain(); 39 } 40 41 void remove(Node* &o, int x) 42 { 43 int d = o->cmp(x); 44 if(d == -1) 45 { 46 if(o->ch[0] == NULL) o = o->ch[1]; 47 else if(o->ch[1] == NULL) o = o->ch[0]; 48 else 49 { 50 int d2 = o->ch[0]->r < o->ch[1]->r ? 0 : 1; 51 rotate(o, d2); remove(o->ch[d2], x); 52 } 53 } 54 else remove(o->ch[d], x); 55 if(o != NULL) o->maintain(); 56 } 57 58 const int maxc = 500000 + 10; 59 struct Command 60 { 61 char type; 62 int x, p; 63 }cmd[maxc]; 64 65 const int maxn = 20000 + 10; 66 const int maxm = 60000 + 10; 67 68 int weight[maxn], from[maxm], to[maxm]; 69 bool removed[maxm]; 70 int n, m, query_cnt; 71 long long query_tot; 72 73 int pa[maxn]; 74 int findset(int x) { return x == pa[x] ? x : pa[x] = findset(pa[x]); } 75 76 Node* root[maxn]; 77 78 int kth(Node* o, int k) 79 { 80 if(o == NULL || k <= 0 || k > o->s) return 0; 81 int s = o->ch[1] == NULL ? 0 : o->ch[1]->s; 82 if(k == s + 1) return o->v; 83 if(k <= s) return kth(o->ch[1], k); 84 return kth(o->ch[0], k - s - 1); 85 } 86 87 void MergeTo(Node* &src, Node* &dest) 88 { 89 if(src->ch[0] != NULL) MergeTo(src->ch[0], dest); 90 if(src->ch[1] != NULL) MergeTo(src->ch[1], dest); 91 insert(dest, src->v); 92 delete src; 93 src = NULL; 94 } 95 96 void RemoveTree(Node* &o) 97 { 98 if(o->ch[0] != NULL) RemoveTree(o->ch[0]); 99 if(o->ch[1] != NULL) RemoveTree(o->ch[1]); 100 delete o; 101 o = NULL; 102 } 103 104 void AddEdge(int x) 105 { 106 int u = findset(from[x]); 107 int v = findset(to[x]); 108 if(u != v) 109 { 110 if(root[u]->s < root[v]->s) { pa[u] = v; MergeTo(root[u], root[v]); } 111 else { pa[v] = u; MergeTo(root[v], root[u]); } 112 } 113 } 114 115 void Query(int x, int k) 116 { 117 query_cnt++; 118 query_tot += kth(root[findset(x)], k); 119 } 120 121 void ChangeWeight(int x, int v) 122 { 123 int u = findset(x); 124 remove(root[u], weight[x]); 125 insert(root[u], v); 126 weight[x] = v; 127 } 128 129 int main() 130 { 131 //freopen("in.txt", "r", stdin); 132 133 int kase = 0; 134 while(scanf("%d%d", &n, &m) == 2 && n) 135 { 136 for(int i = 1; i <= n; i++) scanf("%d", &weight[i]); 137 for(int i = 1; i <= m; i++) scanf("%d%d", &from[i], &to[i]); 138 memset(removed, false, sizeof(removed)); 139 140 int c = 0; 141 for(;;) 142 { 143 char type[5]; scanf("%s", type); 144 if(type[0] == 'E') break; 145 int x, p = 0, v = 0; 146 scanf("%d", &x); 147 if(type[0] == 'D') removed[x] = true; 148 if(type[0] == 'Q') scanf("%d", &p); 149 if(type[0] == 'C') 150 { 151 scanf("%d", &v); 152 p = weight[x]; 153 weight[x] = v; 154 } 155 cmd[c++] = (Command) { type[0], x, p }; 156 } 157 158 for(int i = 1; i <= n; i++) 159 { 160 pa[i] = i; if(root[i] != NULL) RemoveTree(root[i]); 161 root[i] = new Node(weight[i]); 162 } 163 for(int i = 1; i <= m; i++) if(!removed[i]) AddEdge(i); 164 165 query_cnt = query_tot = 0; 166 for(int i = c - 1; i >= 0; i--) 167 { 168 char type = cmd[i].type; 169 int x = cmd[i].x, p = cmd[i].p; 170 if(type == 'D') AddEdge(x); 171 if(type == 'Q') Query(x, p); 172 if(type == 'C') ChangeWeight(x, p); 173 } 174 printf("Case %d: %.6f ", ++kase, query_tot / (double)query_cnt); 175 } 176 177 return 0; 178 }