题目链接:洛谷
题目大意:求$$sum_{i=1}^nC_{n}^ii^k$$
数据范围:$1leq nleq 10^9,1leq kleq 5000$
这道题就是完全的模板了
$$ans=sum_{i=1}^nC_n^isum_{d=0}^kd!S(k,d)C_i^d$$
$$=sum_{d=0}^kd!S(k,d)sum_{i=1}^nC_n^iC_i^d$$
$$=sum_{d=0}^kd!S(k,d)C_n^dsum_{i=d}^nC_{n-d}^{i-d}$$
$$=sum_{d=0}^kd!S(k,d)C_n^d2^{n-d}$$
至于那个等式
$$C_n^iC_i^d=C_n^dC_{n-d}^{i-d}$$
只要根据组合数的定义拆一下就可以了。
1 #include<cstdio> 2 #define Rint register int 3 using namespace std; 4 typedef long long LL; 5 const int N = 5003, mod = 1e9 + 7; 6 int n, k, S[N][N], ans; 7 inline int kasumi(int a, int b){ 8 int res = 1; 9 while(b){ 10 if(b & 1) res = (LL) res * a % mod; 11 a = (LL) a * a % mod; 12 b >>= 1; 13 } 14 return res; 15 } 16 int main(){ 17 scanf("%d%d", &n, &k); 18 S[0][0] = 1; 19 for(Rint i = 1;i <= k;i ++) 20 for(Rint j = 1;j <= i;j ++) 21 S[i][j] = ((LL) S[i - 1][j] * j + S[i - 1][j - 1]) % mod; 22 int fac = 1, cho = 1; 23 for(Rint i = 1;i <= k && i <= n;i ++){ 24 cho = (LL) cho * (n - i + 1) % mod * kasumi(i, mod - 2) % mod; 25 fac = (LL) fac * i % mod; 26 ans = (ans + (LL) fac * cho % mod * kasumi(2, n - i) % mod * S[k][i] % mod) % mod; 27 } 28 printf("%d", ans); 29 }