【链接】http://acm.hdu.edu.cn/showproblem.php?pid=6148
【题意】
在这里写题意
【题解】
先把1..N里面的山峰数字个数算出来->x
然后用N减去这个x就好;
这类的DP用记忆化搜索写比较好写.
参数存是否上升过,是否下降过,以及是否能枚举到9就好了.
只要出现从某一位开始能够每一位都枚举到9了.
则剩余的数字,每一位都能枚举到9;
且它的方案只有up,down,前一个数字是什么,剩余的需要枚举量这几个东西决定.
且都是固定的,通用的方案数.
【错的次数】
0
【反思】
在这了写反思
【代码】
#include <bits/stdc++.h> using namespace std; #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define LL long long #define rep1(i,a,b) for (int i = a;i <= b;i++) #define rep2(i,a,b) for (int i = a;i >= b;i--) #define mp make_pair #define pb push_back #define fi first #define se second #define ms(x,y) memset(x,y,sizeof x) #define ri(x) scanf("%d",&x) #define rl(x) scanf("%lld",&x) #define rs(x) scanf("%s",x) #define oi(x) printf("%d",x) #define ol(x) printf("%lld",x) #define oc putchar(' ') #define os(x) printf(x) #define all(x) x.begin(),x.end() #define Open() freopen("F:\rush.txt","r",stdin) #define Close() ios::sync_with_stdio(0) typedef pair<int,int> pii; typedef pair<LL,LL> pll; const int dx[9] = {0,1,-1,0,0,-1,-1,1,1}; const int dy[9] = {0,0,0,-1,1,-1,1,-1,1}; const double pi = acos(-1.0); const int N = 100; const LL MOD = 1e9+7; int T,a[N+10],len,temp[N+10]; LL dp[10][N+10][2][2]; char s[N+10]; LL dfs(int start,int cur,bool up,bool down,bool xiao){ if (cur > len) return (up&&down); int imax = xiao?9:a[cur]; if (start!=cur && xiao && dp[temp[cur-1]][len-cur+1][up][down]!=-1) return dp[temp[cur-1]][len-cur+1][up][down]; LL ret = 0; rep1(i,0,imax){ temp[cur] = i; bool ju = xiao || (i < imax); if (i==0 && start==cur) ret = (ret + dfs(start+1,cur+1,up,down,ju))%MOD; else{ if (start==cur){ ret = (ret + dfs(start,cur+1,up,down,ju))%MOD; }else { if (up && down){ ret = (ret + dfs(start,cur+1,up,down,ju))%MOD; }else{ if (temp[cur]==temp[cur-1]){ ret = (ret + dfs(start,cur+1,up,down,ju))%MOD; } if (temp[cur] > temp[cur-1]){ ret = (ret + dfs(start,cur+1,1,0,ju))%MOD; } if (temp[cur] < temp[cur-1]){ ret = (ret + dfs(start,cur+1,up,1,ju))%MOD; } } } } } if (start != cur && xiao) dp[temp[cur-1]][len-cur+1][up][down] = ret; return ret; } int main(){ //Open(); //Close(); ms(dp,255); ri(T); while (T--){ LL init = 0; rs(s); len = strlen(s); rep1(i,0,len-1) a[i+1] = s[i]-'0'; rep1(i,1,len) init = (init*10+a[i])%MOD; ol((init-dfs(1,1,0,0,0)+MOD)%MOD);puts(""); } return 0; }