zoukankan      html  css  js  c++  java
  • 【TP SRM 703 div2 500】 GCDGraph

    Problem Statement

    You are given four ints: n, k, x, and y. The ints n and k describe a simple undirected graph. The graph has n nodes, numbered 1 through n. Two distinct vertices i and j are connected by an edge if and only if gcd(i, j) > k. Here, gcd(i, j) denotes the greatest common divisor of i and j. The ints x and y are the numbers of two (not necessarily distinct) vertices in our graph. Return “Possible” if it is possible to travel from x to y by following the edges of our graph. Otherwise, return “Impossible”. In other words, return “Possible” if our graph contains a path that connects the nodes x and y, and “Impossible” if there is no such path.
    Definition

    Class:
    GCDGraph
    Method:
    possible
    Parameters:
    int, int, int, int
    Returns:
    string
    Method signature:
    string possible(int n, int k, int x, int y)
    (be sure your method is public)
    Limits

    Time limit (s):
    2.000
    Memory limit (MB):
    256
    Stack limit (MB):
    256

    Constraints

    n will be between 2 and 1,000,000, inclusive.

    k will be between 0 and n, inclusive.

    x and y will be between 1 and n, inclusive.
    Examples
    0)

    12
    2
    8
    9
    Returns: “Possible”
    We have a graph with n = 12 nodes. As k = 2, vertices i and j are connected by an edge if and only if gcd(i, j) is strictly greater than 2. In this graph it is possible to travel from node 8 to node 9. One possible path: 8 -> 4 -> 12 -> 9.
    1)

    12
    2
    11
    12
    Returns: “Impossible”
    This is the same graph as in Example 0, but now we are interested in another pair of nodes. It is not possible to travel from node 11 to node 12. In particular, in our graph node 11 is an isolated node because for any other node x we have gcd(11, x) = 1.
    2)

    12
    2
    11
    11
    Returns: “Possible”
    A node is always reachable from itself.
    3)

    10
    2
    8
    9
    Returns: “Impossible”

    4)

    1000000
    1000
    12345
    54321
    Returns: “Possible”

    5)

    1000000
    2000
    12345
    54321
    Returns: “Impossible”

    6)

    2
    0
    1
    2
    Returns: “Possible”

    【题目链接】:

    【题解】

    大意是说两个节点之间有边当且仅当两个节点的标号的gcd>k;
    可以这样.
    先枚举比k大的且比n小的数i;
    然后它的倍数和它之间连了一条边.
    表示这两个数的最大公因数为i;而i大于k;所以满足题意;
    而所有i的出度点之间则肯定也有路径可以到达了。
    可以这样想?
    两个数x,y的gcd为i
    则i和y的gcd为i
    i和x的gcd也为i
    即x和y肯定是i的倍数.
    所以如果i大于k
    这对关系x,y肯定能找出来;(用并查集判断就可以了);
    其他的要通过间接关系找出来的也同理吧!
    用并查集描述两个数之间是否联通即可.

    【完整代码】

    #include <bits/stdc++.h>
    using namespace std;
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    #define LL long long
    #define rep1(i,a,b) for (int i = a;i <= b;i++)
    #define rep2(i,a,b) for (int i = a;i >= b;i--)
    #define mp make_pair
    #define pb push_back
    #define fi first
    #define se second
    
    typedef pair<int,int> pii;
    typedef pair<LL,LL> pll;
    
    const int MAXN = 1e6+100;
    const int dx[5] = {0,1,-1,0,0};
    const int dy[5] = {0,0,0,-1,1};
    const double pi = acos(-1.0);
    
    int f[MAXN];
    
    int ff(int x)
    {
        if (f[x]!=x)
            f[x] = ff(f[x]);
        else
            return x;
        return f[x];
    }
    
    class GCDGraph
    {
        public:
            string possible(int n, int k, int x, int y)
            {
                rep1(i,1,n)
                    f[i] = i;
                rep1(i,k+1,n)
                {
                    int fa = ff(i);
                    for (int j = 2*i;j <= n;j+=i)
                    {
                        int r1 = ff(j);
                        f[r1] = fa;
                    }
                }
                if (ff(x)==ff(y))
                    return "Possible";
                else
                    return "Impossible";
            }
    };
  • 相关阅读:
    Flex 学习笔记 Remoting中的作用域(转)
    Flex 学习笔记 动态设置itemRenderer
    发现一个很好玩的网站个人漫画
    AjaxLoad动态生成加载图标的网站
    如何提高大字符串(是从文本文件读取出来的,有2M多)在网页中的显示速度
    CSS纵向居中问题
    用javascript进行xsl转换
    实现鼠标感应效果
    随笔写写
    execCommand指令集
  • 原文地址:https://www.cnblogs.com/AWCXV/p/7626822.html
Copyright © 2011-2022 走看看