Time Limit: 1 second
Memory Limit: 128 MB
【问题描述】
给出一个N个顶点M条边的无向无权图,顶点编号为1~N。问从顶点1开始,到其他每个点的最短路有几条。
【输入格式】
输入文件shortest.in的第一行包含2个正整数N,M,为图的顶点数与边数。 接下来M行,每行两个正整数x, y,表示有一条顶点x连向顶点y的边,请注意可能有自环与重边。
【输出格式】
输出文件shortest.out包括N行,每行一个非负整数,第i行输出从顶点1到顶点i有多少条不同的最短路,由于答案有可能会很大,你只需要输出mod 100003后的结果即可。如果无法到达顶点i则输出0。
【数据规模】
对于20%的数据,N ≤ 100; 对于60%的数据,N ≤ 1000; 对于100%的数据,N ≤ 100000,M ≤ 200000。
Sample Input1
5 7
1 2
1 3
2 4
3 4
2 3
4 5
4 5
Sample Output1
1
1
1
2
4
【样例说明】
1到5的最短路有4条,分别为2条1-2-4-5和2条1-3-4-5(由于4-5的边有2条)。
【题目链接】:http://noi.qz5z.com/viewtask.asp?id=u116
【题解】
自环直接删掉,因为它只会增加长度;
设dis[x]表示从1号节点到x号节点的最短路;
因为是无权图;所以在进行bfs的时候第一次到达的点就是最短路;
且在进行bfs的时候队列中从头节点到尾节点,里面所包含的节点的dis值肯定是不下降的;则我们处理到第x号节点,要找它的出度的时候;所有到x号节点的最短路径一定已经搞出来了;则用ans数组统计到某个点的路径数;在搞出度的时候往后传递就好;
不会出现x->y处理完之后又出现w->x的情况
即x的方案数传递给y之后,发现又有到x的最短路的方案;
这种情况是不会出现的;(还是那个dis数组是不下降的原因);
即ans[y] +=ans[x]之后,不可能会有一个节点w又更新了ans[x];因为广搜是一步一步地处理的;
假设dis[x]==3;
则我们如果要更新y号节点的方案数肯定是因为我们当前队列的头结点x已经是dis值最小的点了;
而dis[w]要想更新dis[x];则dis[w]肯定小于3;则肯定在取出当前头结点x之前w已经更新过x了;
【完整代码】
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <set>
#include <map>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <queue>
#include <vector>
#include <stack>
#include <string>
using namespace std;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define LL long long
#define rep1(i,a,b) for (int i = a;i <= b;i++)
#define rep2(i,a,b) for (int i = a;i >= b;i--)
#define mp make_pair
#define pb push_back
#define fi first
#define se second
typedef pair<int,int> pii;
typedef pair<LL,LL> pll;
void rel(LL &r)
{
r = 0;
char t = getchar();
while (!isdigit(t) && t!='-') t = getchar();
LL sign = 1;
if (t == '-')sign = -1;
while (!isdigit(t)) t = getchar();
while (isdigit(t)) r = r * 10 + t - '0', t = getchar();
r = r*sign;
}
void rei(int &r)
{
r = 0;
char t = getchar();
while (!isdigit(t)&&t!='-') t = getchar();
int sign = 1;
if (t == '-')sign = -1;
while (!isdigit(t)) t = getchar();
while (isdigit(t)) r = r * 10 + t - '0', t = getchar();
r = r*sign;
}
const int INF = 0x3f3f3f3f;
const int MOD = 100003;
const int MAXN = 1e5+100;
const int MAXM = 40e4+100;
const int dx[9] = {0,1,-1,0,0,-1,-1,1,1};
const int dy[9] = {0,0,0,-1,1,-1,1,-1,1};
const double pi = acos(-1.0);
int n,m,nex[MAXM],fir[MAXN],en[MAXM];
queue <int> dl;
int dis[MAXN],ans[MAXN];
int totm = 0;
void add(int x,int y)
{
totm++;
nex[totm] = fir[x];
fir[x] = totm;
en[totm] = y;
}
int main()
{
//freopen("F:\rush.txt","r",stdin);
rei(n);rei(m);
rep1(i,1,m)
{
int x,y;
scanf("%d%d",&x,&y);
if (x!=y)
add(x,y),add(y,x);
}
dl.push(1);
memset(dis,INF,sizeof dis);
ans[1] = 1;dis[1] = 0;
while (!dl.empty())
{
int x = dl.front();
dl.pop();
for (int temp=fir[x];temp;temp=nex[temp])
{
int y = en[temp];
if (dis[y]==INF)
{
dis[y] = dis[x]+1;
ans[y] = ans[x];
dl.push(y);
}
else
if (dis[y]==dis[x]+1)
ans[y] = (ans[y]+ans[x])%MOD;
}
}
rep1(i,1,n)
printf("%d
",ans[i]);
return 0;
}