zoukankan      html  css  js  c++  java
  • 【Codeforces Round #299 (Div. 2) E】Tavas and Pashmaks

    【链接】 我是链接,点我呀:)
    【题意】

    游泳+跑步比赛。 先游泳,然后跑步. 最先到终点的人是winner. 但是现在游泳的距离和跑步的距离长度都不确定。 S和R. 给你n个人,告诉你每个人游泳的速度以及它们跑步的速度。 现在问你在改变S,R的情况下,第i个人有没有可能为winner. 输出所有可能为winner的人的编号。

    【题解】

    每个人所花费的时间为$frac{S}{si} + frac{R}{ri}$ 可以看成是向量{S,R}和($frac{1}{si}$,$frac{1}{ri}$)的点积。 考虑点积的几何意义为向量上的投影长度。 而一堆点里面,和某个固定的向量的投影长度.↓↓ 会发现,总是凸包的边界上的某个点。 接下来的思路来自这里[我是一个链接](http://blog.csdn.net/fearlessxjdx/article/details/73327063?readlog) 看完思路之后接着 则,只要求出凸包。 然后找最坐标的x值最小的点就好(有多个x相同就找y尽量小的); ->求完凸包之后,因为排了个序,ch[0]就是这个最左的点。 然后找一个y值为最小的点就好了。 (多个最小,直接取x最小的就好); 所以求完凸包之后,顺序枚举,找到一个y=y的最小值,那么这一段就是所需的了。 重复点不要忘记加上去~就是那个to.

    【代码】

    #include <bits/stdc++.h>
    using namespace std;
    
    struct Point {
        double x, y;
        int id;
        Point() {}
        Point(double x, double y) {
            this->x = x;
            this->y = y;
        }
        void read(int id) {
        	int s, b;
        	scanf("%d%d", &s, &b);
        	x = 1000000.0 / s; y = 1000000.0 / b;
        	this->id = id;
        }
    };
    
    const double eps = 1e-16;
    
    int dcmp(double x) {
        if (fabs(x) < eps) return 0;
        else return x < 0 ? -1 : 1;
    }
    typedef Point Vector;
    
    Vector operator + (Vector A, Vector B) {
        return Vector(A.x + B.x, A.y + B.y);
    }
    
    Vector operator - (Vector A, Vector B) {
        return Vector(A.x - B.x, A.y - B.y);
    }
    
    Vector operator * (Vector A, double p) {
        return Vector(A.x * p, A.y * p);
    }
    
    Vector operator / (Vector A, double p) {
        return Vector(A.x / p, A.y / p);
    }
    
    bool operator < (const Point& a, const Point& b) {
        return a.x < b.x || (dcmp(a.x - b.x) == 0 && a.y < b.y);
    }
    
    
    bool operator == (const Point& a, const Point& b) {
        return dcmp(a.x - b.x) == 0 && dcmp(a.y - b.y) == 0;
    }
    
    double Dot(Vector A, Vector B) {return A.x * B.x + A.y * B.y;} //点积
    double Length(Vector A) {return sqrt(Dot(A, A));} //向量的模
    double Angle(Vector A, Vector B) {return acos(Dot(A, B) / Length(A) / Length(B));} //向量夹角
    double Cross(Vector A, Vector B) {return A.x * B.y - A.y * B.x;} //叉积
    double Area2(Point A, Point B, Point C) {return Cross(B - A, C - A);} //有向面积
    
    struct Line {
        Point v, p;
        Line() {}
        Line(Point v, Point p) {
            this->v = v;
            this->p = p;
        }
        Point point(double t) {
            return v + p * t;
        }
    };
    
    //向量旋转
    Vector Rotate(Vector A, double rad) {
        return Vector(A.x * cos(rad) - A.y * sin(rad), A.x * sin(rad) + A.y * cos(rad));
    }
    
    Vector AngleBisector(Point p, Vector v1, Vector v2){//给定两个向量,求角平分线
        double rad = Angle(v1, v2);
        return Rotate(v1, dcmp(Cross(v1, v2)) * 0.5 * rad);
    }
    
    //判断3点共线
    bool LineCoincide(Point p1, Point p2, Point p3) {
        return dcmp(Cross(p2 - p1, p3 - p1)) == 0;
    }
    
    //判断向量平行
    bool LineParallel(Vector v, Vector w) {
        return Cross(v, w) == 0;
    }
    
    //判断向量垂直
    bool LineVertical(Vector v, Vector w) {
        return Dot(v, w) == 0;
    }
    
    //计算两直线交点,平行,重合要先判断
    Point GetLineIntersection(Point P, Vector v, Point Q, Vector w) {
        Vector u = P - Q;
        double t = Cross(w, u) / Cross(v, w);
        return P + v * t;
    }
    
    //点到直线距离
    double DistanceToLine(Point P, Point A, Point B) {
        Vector v1 = B - A, v2 = P - A;
        return fabs(Cross(v1, v2)) / Length(v1);
    }
    
    //点到线段距离
    double DistanceToSegment(Point P, Point A, Point B) {
        if (A == B) return Length(P - A);
        Vector v1 = B - A, v2 = P - A, v3 = P - B;
        if (dcmp(Dot(v1, v2)) < 0) return Length(v2);
        else if (dcmp(Dot(v1, v3)) > 0) return Length(v3);
        else return fabs(Cross(v1, v2)) / Length(v1);
    }
    
    //点在直线上的投影点
    Point GetLineProjection(Point P, Point A, Point B) {
        Vector v = B - A;
        return A + v * (Dot(v, P - A) / Dot(v, v));
    }
    
    //线段相交判定(规范相交)
    bool SegmentProperIntersection(Point a1, Point a2, Point b1, Point b2) {
        double c1 = Cross(a2 - a1, b1 - a1), c2 = Cross(a2 - a1, b2 - a1),
                c3 = Cross(b2 - b1, a1 - b1), c4 = Cross(b2 - b1, a2 - b1);
        return dcmp(c1) * dcmp(c2) < 0 && dcmp(c3) * dcmp(c4) < 0;
    }
    
    //可以不规范相交
    bool SegmentProperIntersection2(Point a1, Point a2, Point b1, Point b2) {  
        double c1 = Cross(a2 - a1, b1 - a1), c2 = Cross(a2 - a1, b2 - a1),  
                c3 = Cross(b2 - b1, a1 - b1), c4 = Cross(b2 - b1, a2 - b1);  
        return max(a1.x, a2.x) >= min(b1.x, b2.x) &&  
        max(b1.x, b2.x) >= min(a1.x, a2.x) &&  
        max(a1.y, a2.y) >= min(b1.y, b2.y) &&  
        max(b1.y, b2.y) >= min(a1.y, a2.y) &&  
        dcmp(c1) * dcmp(c2) <= 0 && dcmp(c3) * dcmp(c4) <= 0;  
    }
    
    //判断点在线段上, 不包含端点
    bool OnSegment(Point p, Point a1, Point a2) {
        return dcmp(Cross(a1 - p, a2 - p)) == 0 && dcmp(Dot(a1 - p, a2 - p)) < 0;
    }
    
    //n边形的面积
    double PolygonArea(Point *p, int n) {
        double area = 0;
        for (int i = 1; i < n - 1; i++)
            area += Cross(p[i] - p[0], p[i + 1] - p[0]);
        return area / 2;
    }
    
    //点是否在多边形内部
    int isPointInPolygon(Point o, Point *p, int n) {
        int wn = 0;
        for (int i = 0; i < n; i++) {
            if (OnSegment(o, p[i], p[(i + 1) % n])) return -1;
            int k = dcmp(Cross(p[(i + 1) % n] - p[i], o - p[i]));
            int d1 = dcmp(p[i].y - o.y);
            int d2 = dcmp(p[(i + 1) % n].y - o.y);
            if (k > 0 && d1 <= 0 && d2 > 0) wn++;
            if (k < 0 && d2 <= 0 && d1 > 0) wn--;
        }
        if (wn != 0) return 1;
        return 0;
    }
    
    const int N = 200005;
    int to[N];
    
    //凸包
    int ConvexHull(Point *p, int n, Point *ch) {
        sort(p, p + n);
        int m = 0;
        memset(to, -1, sizeof(to));
        //两个叉积改成<,可以求共线凸包
        for (int i = 0; i < n; i++) {
        	to[i] = i;
        	if (i && p[i] == p[i - 1]) {
    			to[i] = to[i - 1];
    			continue;
    		}
            while (m > 1 && dcmp(Cross(ch[m - 1] - ch[m - 2], p[i] - ch[m - 2])) <= 0) m--;
            ch[m++] = p[i];
        }
        int k = m;
        for (int i = n - 2; i >= 0; i--) {
            while (m > k && dcmp(Cross(ch[m - 1] - ch[m - 2], p[i] - ch[m - 2])) <= 0) m--;
            ch[m++] = p[i];
        }
        if (n > 1) m--;
        return m;
    }
    
    Point a[N+10],ch[N+10];
    bool vis[N+10];
    int n,m;
    double mi = 1e18;
    
    int main(){
    	#ifdef LOCAL_DEFINE
    		freopen("F:\c++source\rush_in.txt","r",stdin);	      	
    	#endif
    	scanf("%d",&n);
    	for (int i = 0;i < n;i++){
    	 	a[i].read(i);
    	}
    	m =	ConvexHull(a,n,ch);
    	for (int i = 0;i < m;i++) mi = min(mi,ch[i].y);	
    	for (int i = 0;i < m;i++){
    		vis[ch[i].id] = 1;
    		if (ch[i].y==mi) break;
    	}
    	for (int i = 0;i < n;i++)
    		if (vis[a[to[i]].id]) vis[a[i].id] = 1;
    	for (int i = 0;i < n;i++)
    		if (vis[i]){
    		 	printf("%d",i+1);
    		 	if (i==n-1) puts("");else putchar(' ');
    		}
    
     	return 0;
    }
    
  • 相关阅读:
    NoInstall_Mysql
    说话
    我是一名博客新人
    pom.xml报错
    模板——链表模板、有序链表模板及测试
    模板——函数模板
    模板——类模板
    MDI程序演示
    容器和算法2 C++快速入门48(完)
    MDI程序演示
  • 原文地址:https://www.cnblogs.com/AWCXV/p/7819387.html
Copyright © 2011-2022 走看看