【链接】 我是链接,点我呀:)
【题意】
【题解】
m比较小 <=1000a[i]直接看成a[i]%m就可以了。
有n个0..999之间的整数。。
如果有一个0那么就直接输出Yes.
否则要用那些数字凑0
则用cnt[0..999]记录每个数字出现的个数。
即n个物品,每个物品cnt[i]个。
然后凑和为0
->多重背包。
但每个物品的数量可能很多。
所以加一个二进制优化就好了。
把每个物品的数量转化成二进制。
转换成01背包的问题。
(物品的数目大概在1000*log2(1e6)的样子
然后容量是1000.
这时候就可以做了。
另解
如果n>m的话。
前缀和数组中肯定有sum[i]%m和sum[j]%m相同。
(抽屉原理,每个数字在0..m-1之间,然后有m+1个数字的话,显然不可能每个数字都相同。
则i+1..j之间的和就是m的倍数了。
所以直接输出YES.
否则做一个O(M^2)的背包就好。
【代码】
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int M = 1e3+10;
bool f[2][M];
int a[M],n,m;
vector<int> v;
int main()
{
ios::sync_with_stdio(0),cin.tie(0);
#ifdef LOCAL_DEFINE
freopen("rush.txt","r",stdin);
#endif
cin >> n >> m;
for (int i = 1;i <= n;i++) {
int x;cin >>x;x%=m;
a[x]++;
}
if (a[0]>0){
cout<<"YES"<<endl;
return 0;
}
for (int i = 1;i < m;i++)
if (a[i]>0){
int temp = 1;
while (a[i]>=temp){
v.push_back((1LL*temp*i)%m);
a[i]-=temp;
temp*=2;
}
if (a[i]>0) v.push_back((1LL*a[i]*i)%m);
}
if (!v.empty()){
f[0][v[0]] = 1;
if (v[0]==0) return cout<<"YES"<<endl,0;
for (int i = 1;i <(int)v.size();i++){
for (int j = 0;j < m;j++) f[i&1][j] = 0;
for (int j = 1;j <= m-1;j++)
if (f[(i&1)^1][j]){
int k = (j+v[i])%m;
f[i&1][j] = 1;
f[i&1][k] = 1;
}
f[i&1][v[i]] = 1;
if (f[i&1][0]) return cout<<"YES"<<endl,0;
}
}
cout<<"NO"<<endl;
return 0;
}