zoukankan      html  css  js  c++  java
  • usOJ

    ( ext{Description})

    传送门。

    ( ext{Solution})

    首先可以证明,在 (k=0) 的情况下,最后的值一定在序列中间几个数中选。

    如果旁边的值大于中间的值,后手一定会取先手对称的地方,这样维持最后取中间几个数的情况。如果小于先手同理。

    所以我们只用考虑中间数的选取。

    • 奇数长度:显然剩下中间三个数,那么先手如果取最左边后,后手会在右边两个数中剩下最小的,如果取右边,后手会在左边两个数中剩下最小的,身为先手,肯定要将这两个最小值中取最大的。

      代码就是这样:

      Max(Min(a[mid-1],a[mid]),Min(a[mid],a[mid+1]))
      
    • 偶数长度:剩下中间两个数,先手剩下最大的就行了。

    好的接下来我们就需要考虑 (k>0) 的情况了。

    如果 (k=1),显然取 (max( ext{work(}1,n-1), ext{work(}2,n)))。(我们先扔一个,其中 ( ext{work()}) 是用来算 (k=0) 情况的函数)

    其他情况其实是 (max(ans[i-2],max( ext{work}(1,n-i), ext{work}(i+1,n))))。就是要么 (k) 次全删左/右边,要么先在左右各删一个,在转移到 (k-2) 的情况。

    最后注意一下 (k=n-1) 的特殊情况,可以直接删到只剩一个数。

    ( ext{Code})

    #include <cstdio>
    
    #define rep(i,_l,_r) for(register signed i=(_l),_end=(_r);i<=_end;++i)
    #define fep(i,_l,_r) for(register signed i=(_l),_end=(_r);i>=_end;--i)
    #define erep(i,u) for(signed i=head[u],v=to[i];i;i=nxt[i],v=to[i])
    #define efep(i,u) for(signed i=Head[u],v=to[i];i;i=nxt[i],v=to[i])
    #define print(x,y) write(x),putchar(y)
    
    template <class T> inline T read(const T sample) {
        T x=0; int f=1; char s;
        while((s=getchar())>'9'||s<'0') if(s=='-') f=-1;
        while(s>='0'&&s<='9') x=(x<<1)+(x<<3)+(s^48),s=getchar();
        return x*f;
    }
    template <class T> inline void write(const T x) {
        if(x<0) return (void) (putchar('-'),write(-x));
        if(x>9) write(x/10);
        putchar(x%10^48);
    }
    template <class T> inline T Max(const T x,const T y) {if(x>y) return x; return y;}
    template <class T> inline T Min(const T x,const T y) {if(x<y) return x; return y;}
    template <class T> inline T fab(const T x) {return x>0?x:-x;}
    template <class T> inline T gcd(const T x,const T y) {return y?gcd(y,x%y):x;}
    template <class T> inline T lcm(const T x,const T y) {return x/gcd(x,y)*y;}
    template <class T> inline T Swap(T &x,T &y) {x^=y^=x^=y;}
    
    const int maxn=2e5+5;
    
    int n,k,a[maxn],ans[maxn];
    
    int work(int l,int r) {
    	int mid=l+r>>1;
    	if((r-l+1)&1) return Max(Min(a[mid-1],a[mid]),Min(a[mid],a[mid+1]));
    	else return Max(a[mid],a[mid+1]);
    }
    
    int main() {
    	n=read(9),k=read(9);
    	rep(i,1,n) a[i]=read(9);
    	ans[0]=work(1,n); ans[1]=Max(work(1,n-1),work(2,n));
    	rep(i,2,n-1) ans[i]=Max(ans[i-2],Max(work(1,n-i),work(i+1,n)));
    	rep(i,1,n) ans[n-1]=Max(ans[n-1],a[i]);
    	if(k>=0) print(ans[k],'
    ');
    	else rep(i,0,n-1) print(ans[i],' ');
    	return 0;
    } 
    
  • 相关阅读:
    学习c++一点一滴mbstowcs
    学习c++一点一滴读取网络适配器信息
    学习c++一点一滴资源dll的封装和调用
    存储过程
    学习c++一点一滴c++builder 导出excel
    线程池
    Jacob操作office文档(Word,PPT,Excel)
    域名转让
    线程交互
    Scala中的语言特性是如何实现的(2)
  • 原文地址:https://www.cnblogs.com/AWhiteWall/p/13765695.html
Copyright © 2011-2022 走看看