zoukankan      html  css  js  c++  java
  • hdu 1086 You can Solve a Geometry Problem too

    You can Solve a Geometry Problem too

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 10204    Accepted Submission(s): 5042

    Problem Description
    Many geometry(几何)problems were designed in the ACM/ICPC. And now, I also prepare a geometry problem for this final exam. According to the experience of many ACMers, geometry problems are always much trouble, but this problem is very easy, after all we are now attending an exam, not a contest :)
    Give you N (1<=N<=100) segments(线段), please output the number of all intersections(交点). You should count repeatedly if M (M>2) segments intersect at the same point.

    Note:
    You can assume that two segments would not intersect at more than one point.
     
    Input
    Input contains multiple test cases. Each test case contains a integer N (1=N<=100) in a line first, and then N lines follow. Each line describes one segment with four float values x1, y1, x2, y2 which are coordinates of the segment’s ending.
    A test case starting with 0 terminates the input and this test case is not to be processed.
     
    Output
    For each case, print the number of intersections, and one line one case.
     
    Sample Input
    2
    0.00 0.00 1.00 1.00
    0.00 1.00 1.00 0.00
    3
    1.00 0.00 1.00 1.00
    0.00 1.00 1.00 0.000
    0.00 0.00 1.00 0.00 0
     
    Sample Output
    1 3
     
    Author
    lcy
    判断两个线段有没有交点  百度  叉积
    /*
    判断AB和CD两线段是否有交点:
    同时满足两个条件:('x'表示叉积)
    1.C点D点分别在AB的两侧.(向量(ABxAC)*(ABxAD)<=0)
    2.A点和B点分别在CD两侧.(向量(CDxCA)*(CDxCB)<=0)
    */
     1 #include<iostream>
     2 #include<cstdio>
     3 #include<cmath>
     4 #include<cstring>
     5 using namespace std;
     6 struct node{
     7     double x,y;
     8 }a[105],b[105];
     9 double chaji(node a,node b,node c){
    10     return  (b.x-a.x)*(c.y-a.y)-(c.x-a.x)*(b.y-a.y);
    11 }
    12 int judge(node a,node b,node c,node d){
    13     if(max(a.x,b.x)<min(c.x,d.x)||max(c.x,d.x)<min(a.x,b.x))
    14         return 0;
    15     if(max(a.y,b.y)<min(c.y,d.y)||min(a.y,b.y)>max(c.y,d.y))
    16         return 0;
    17     if(chaji(a,c,d)*chaji(b,c,d)<=0&&(chaji(c,a,b)*chaji(d,a,b)<=0))
    18        return 1;
    19     //if(chaji(c,d,a,b)<=0||chaji(c,d,b,a)<=0)
    20      //   return 1;
    21     //if(chaji(d,c,a,b)<=0||chaji(d,c,b,a)<=0)
    22       //  return 1;
    23     return 0;
    24 }
    25 int main(){
    26     int t;
    27     int i,j;
    28     while(scanf("%d",&t)!=EOF){
    29         if(t==0)
    30             break;
    31         for(i=1;i<=t;i++){
    32             scanf("%lf%lf%lf%lf",&a[i].x,&a[i].y,&b[i].x,&b[i].y);
    33         }
    34         int ans=0;
    35         for(i=1;i<=t;i++){
    36             for(j=i+1;j<=t;j++){
    37                 if(judge(a[i],b[i],a[j],b[j]))
    38                 {
    39                     ans++;
    40                     //cout<<judge(a[i],b[i],a[j],b[j])<<endl;
    41                 }
    42             }
    43         }
    44         printf("%d
    ",ans);
    45     }
    46 
    47 }
  • 相关阅读:
    Ztree下拉框多选
    FullCalendar日程插件
    viscose 前端常用插件
    一些词
    关于require()和export引入依赖的区别
    关于CMD/AMD和Common.js/Sea.js/Require.js
    vue中的双向数据绑定原理简单理解
    Vue-cli简单使用
    webpack简单配置
    vuex基础
  • 原文地址:https://www.cnblogs.com/Aa1039510121/p/5947726.html
Copyright © 2011-2022 走看看