zoukankan      html  css  js  c++  java
  • CodeForces

    Chloe and pleasant prizes

    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Generous sponsors of the olympiad in which Chloe and Vladik took part allowed all the participants to choose a prize for them on their own. Christmas is coming, so sponsors decided to decorate the Christmas tree with their prizes.

    They took n prizes for the contestants and wrote on each of them a unique id (integer from 1 to n). A gift i is characterized by integer ai — pleasantness of the gift. The pleasantness of the gift can be positive, negative or zero. Sponsors placed the gift 1 on the top of the tree. All the other gifts hung on a rope tied to some other gift so that each gift hung on the first gift, possibly with a sequence of ropes and another gifts. Formally, the gifts formed a rooted tree with n vertices.

    The prize-giving procedure goes in the following way: the participants come to the tree one after another, choose any of the remaining gifts and cut the rope this prize hang on. Note that all the ropes which were used to hang other prizes on the chosen one are not cut. So the contestant gets the chosen gift as well as the all the gifts that hang on it, possibly with a sequence of ropes and another gifts.

    Our friends, Chloe and Vladik, shared the first place on the olympiad and they will choose prizes at the same time! To keep themselves from fighting, they decided to choose two different gifts so that the sets of the gifts that hang on them with a sequence of ropes and another gifts don't intersect. In other words, there shouldn't be any gift that hang both on the gift chosen by Chloe and on the gift chosen by Vladik. From all of the possible variants they will choose such pair of prizes that the sum of pleasantness of all the gifts that they will take after cutting the ropes is as large as possible.

    Print the maximum sum of pleasantness that Vladik and Chloe can get. If it is impossible for them to choose the gifts without fighting, print Impossible.

    Input

    The first line contains a single integer n (1 ≤ n ≤ 2·105) — the number of gifts.

    The next line contains n integers a1, a2, ..., an ( - 109 ≤ ai ≤ 109) — the pleasantness of the gifts.

    The next (n - 1) lines contain two numbers each. The i-th of these lines contains integers ui and vi (1 ≤ ui, vi ≤ n, ui ≠ vi) — the description of the tree's edges. It means that gifts with numbers ui and vi are connected to each other with a rope. The gifts' ids in the description of the ropes can be given in arbirtary order: vi hangs on ui or ui hangs on vi.

    It is guaranteed that all the gifts hang on the first gift, possibly with a sequence of ropes and another gifts.

    Output

    If it is possible for Chloe and Vladik to choose prizes without fighting, print single integer — the maximum possible sum of pleasantness they can get together.

    Otherwise print Impossible.

    Examples
    Input
    8
    0 5 -1 4 3 2 6 5
    1 2
    2 4
    2 5
    1 3
    3 6
    6 7
    6 8
    Output
    25
    Input
    4
    1 -5 1 1
    1 2
    1 4
    2 3
    Output
    2
    Input
    1
    -1
    Output
    Impossible

     求两个点的的不相交的最大子树的权值和 

    树形dp  dp[i]  表示以该点为i节点的子树当中权值最大的

     1 #include<iostream>
     2 #include<cstdio>
     3 #include<algorithm>
     4 #include<cstring>
     5 #include<cstdlib>
     6 #include<string.h>
     7 #include<set>
     8 #include<vector>
     9 #include<queue>
    10 #include<stack>
    11 #include<map>
    12 #include<cmath>
    13 typedef long long ll;
    14 typedef unsigned long long LL;
    15 using namespace std;
    16 const double PI=acos(-1.0);
    17 const double eps=0.0000000001;
    18 const ll INF=1e10;
    19 const int N=500000+100;
    20 const ll mod=1000000007;
    21 int head[N];
    22 ll dp[N];
    23 int tot;
    24 ll a[N];
    25 int sum[N];
    26 ll ans;
    27 struct node{
    28     int to,next;
    29 }edge[N<<1];
    30 void init(){
    31     memset(head,-1,sizeof(head));
    32     for(int i=1;i<N;i++){
    33         dp[i]=-INF;
    34     }
    35     tot=0;
    36 }
    37 void add(int u,int v){
    38     edge[tot].to=v;
    39     edge[tot].next=head[u];
    40     head[u]=tot++;
    41     edge[tot].to=u;
    42     edge[tot].next=head[v];
    43     head[v]=tot++;
    44 }
    45 void DFS(int x,int fa){
    46     for(int i=head[x];i!=-1;i=edge[i].next){
    47         int v=edge[i].to;
    48         if(v==fa)continue;
    49         DFS(v,x);
    50         a[x]=a[x]+a[v];
    51         if(dp[x]>-INF)ans=max(ans,dp[x]+dp[v]);
    52         dp[x]=max(dp[x],dp[v]);
    53     }
    54     dp[x]=max(dp[x],a[x]);
    55 }
    56 int main(){
    57     int n;
    58     init();
    59     scanf("%d",&n);
    60     for(int i=1;i<=n;i++)scanf("%I64d",&a[i]);
    61     for(int i=1;i<n;i++){
    62         int u,v;
    63         scanf("%d%d",&u,&v);
    64         add(u,v);
    65     }
    66     ans=-INF;
    67     DFS(1,0);
    68     if(ans==-INF){
    69         cout<<"Impossible"<<endl;
    70         return 0;
    71     }
    72     cout<<ans<<endl;
    73 }
  • 相关阅读:
    堆和栈的区别
    熟悉熟悉常用的几个算法用JS的实现
    JS设置CSS样式的几种方式
    javascript的基本语法、数据结构
    DOM的概念及子节点类型
    三列自适应布局
    Javascript中括号“[]”的多义性
    Javascript中大括号“{}”的多义性
    Javascript小括号“()”的多义性
    JavaScript 开发者经常忽略或误用的七个基础知识点
  • 原文地址:https://www.cnblogs.com/Aa1039510121/p/7302558.html
Copyright © 2011-2022 走看看