zoukankan      html  css  js  c++  java
  • POJ 1149 PIGS ★(经典网络流构图)

    题意】 有M个猪圈,每个猪圈里初始时有若干头猪。一开始所有猪圈都是关闭的。依 次来了N个顾客,每个顾客分别会打开指定的几个猪圈,从中买若干头猪。每 个顾客分别都有他能够买的数量的上限。每个顾客走后,他打开的那些猪圈中的 猪,都可以被任意地调换到其它开着的猪圈里,然后所有猪圈重新关上。问总共 最多能卖出多少头猪。(1 <= N <= 100, 1 <= M <= 1000) 非常好的一道网络流建模题!最大的收获就是: 在面对网络流问题时,如果一时想不出很好的构图方法,不如先构造一个最 直观,或者说最“硬来”的模型,然后再用合并结点和边的方法来简化这个模 型。经过简化以后,好的构图思路自然就会涌现出来了。这是解决网络流问题 的一个好方法。 ---以下思路来自于Edelweiss大牛的《网络流建模汇总》   【建模方法】 不难想象,这个问题的网络模型可以很直观地构造出来。就拿上面的例子来说, 可以构造出图1所示的模型(图中凡是没有标数字的边,容量都是∞): • 三个顾客,就有三轮交易,每一轮分别都有3个猪圈和1个顾客的结点。 • 从源点到第一轮的各个猪圈各有一条边,容量就是各个猪圈里的猪的初始 数量。 • 从各个顾客到汇点各有一条边,容量就是各个顾客能买的数量上限。 • 在某一轮中,从该顾客打开的所有猪圈都有一条边连向该顾客,容量都是 ∞。 • 最后一轮除外,从每一轮的i 号猪圈都有一条边连向下一轮的i 号猪圈, 容量都是∞,表示这一轮剩下的猪可以留到下一轮。 • 最后一轮除外,从每一轮被打开的所有猪圈,到下一轮的同样这些猪圈, 两两之间都要连一条边,表示它们之间可以任意流通。 这个网络模型的最大流量就是最多能卖出的数量。图中最多有 2+N+M×N≈100,000个结点。这个模型虽然很直观,但是结点数太多了,计算速 度肯定会很慢。其实不用再想别的算法,就让我们继续上面的例子,用合并的方 法来简化这个网络模型。 首先,最后一轮中没有打开的猪圈就可以从图中删掉了,也就是图中红色 的部分,显然它们对整个网络的流量没有任何影响。 POJ1149 原始构图   再根据下面网络流节点合并规律:   构图点合并   得到最终的图: POJ1149 最终构图   总结本题的构图规则就是: POJ1149 最后构图方法
    #include 
    #include 
    #include 
    #include 
    #include 
    #include 
    #include 
    #include 
    #include 
    #include 
    #include 
    #define MID(x,y) ((x+y)/2)
    #define mem(a,b) memset(a,b,sizeof(a))
    using namespace std;
    const int MAXV = 305;
    const int MAXE = 10005;
    struct node{
        int u, v, flow;
        int opp;
        int next;
    };
    struct Dinic{
        node arc[MAXE];
        int vn, en, head[MAXV];     //vn点个数(包括源点汇点),en边个数
        int cur[MAXV];              //当前弧
        int q[MAXV];                //bfs建层次图时的队列
        int path[MAXE], top;        //存dfs当前最短路径的栈
        int dep[MAXV];              //各节点层次
        void init(int n){
            vn = n;
            en = 0;
            mem(head, -1);
        }
        void insert_flow(int u, int v, int flow){
            arc[en].u = u;
            arc[en].v = v;
            arc[en].flow = flow;
            arc[en].opp = en + 1;
            arc[en].next = head[u];
            head[u] = en ++;
    
            arc[en].u = v;
            arc[en].v = u;
            arc[en].flow = 0;       //反向弧
            arc[en].opp = en - 1;
            arc[en].next = head[v];
            head[v] = en ++;
        }
        bool bfs(int s, int t){
            mem(dep, -1);
            int lq = 0, rq = 1;
            dep[s] = 0;
            q[lq] = s;
            while(lq < rq){
                int u = q[lq ++];
                if (u == t){
                    return true;
                }
                for (int i = head[u]; i != -1; i = arc[i].next){
                    int v = arc[i].v;
                    if (dep[v] == -1 && arc[i].flow > 0){
                        dep[v] = dep[u] + 1;
                        q[rq ++] = v;
                    }
                }
            }
            return false;
        }
        int solve(int s, int t){
            int maxflow = 0;
            while(bfs(s, t)){
                int i, j;
                for (i = 1; i <= vn; i ++)  cur[i] = head[i];
                for (i = s, top = 0;;){
                    if (i == t){
                        int mink;
                        int minflow = 0x3fffffff;
                        for (int k = 0; k < top; k ++)
                            if (minflow > arc[path[k]].flow){
                                minflow = arc[path[k]].flow;
                                mink = k;
                            }
                        for (int k = 0; k < top; k ++)
                            arc[path[k]].flow -= minflow, arc[arc[path[k]].opp].flow += minflow;
                        maxflow += minflow;
                        top = mink;		//arc[mink]这条边流量变为0, 则直接回溯到该边的起点即可(这条边将不再包含在增广路内).
                        i = arc[path[top]].u;
                    }
                    for (j = cur[i]; j != -1; cur[i] = j = arc[j].next){
                        int v = arc[j].v;
                        if (arc[j].flow && dep[v] == dep[i] + 1)
                            break;
                    }
                    if (j != -1){
                        path[top ++] = j;
                        i = arc[j].v;
                    }
                    else{
                        if (top == 0)   break;
                        dep[i] = -1;
                        i = arc[path[-- top]].u;
                    }
                }
            }
            return maxflow;
        }
    }dinic;
    int indeg[MAXV], outdeg[MAXV];
    int main(){
        int t;
        scanf("%d", &t);
        while (t --){
            mem(indeg, 0);
            mem(outdeg, 0);
            int n, m;
            scanf("%d %d", &n, &m);
            dinic.init(n+2);
            for (int i = 0; i < m; i ++){
                int u, v, w;
                scanf("%d %d %d", &u, &v, &w);
                indeg[v] ++, outdeg[u] ++;
                if (w == 0)
                    dinic.insert_flow(u, v, 1);
            }
            bool ok = 1;
            int sum = 0;
            for (int i = 1; i <= n; i ++){
                int x = abs(indeg[i] - outdeg[i]);
                if (x == 0)
                    continue;
                if (x % 2 == 1){
                    ok = 0;
                    break;
                }
                if (indeg[i] > outdeg[i]){
                    dinic.insert_flow(i, n+2, x/2);
                    sum += x/2;
                }
                else{
                    dinic.insert_flow(n+1, i, x/2);
                }
            }
            if (!ok){
                puts("impossible");
                continue;
            }
            if (dinic.solve(n+1, n+2) == sum){
                puts("possible");
            }
            else{
                puts("impossible");
            }
        }
    	return 0;
    }
    
  • 相关阅读:
    LeetCode "Jump Game"
    LeetCode "Pow(x,n)"
    LeetCode "Reverse Linked List II"
    LeetCode "Unique Binary Search Trees II"
    LeetCode "Combination Sum II"
    LeetCode "Divide Two Integers"
    LeetCode "First Missing Positive"
    LeetCode "Clone Graph"
    LeetCode "Decode Ways"
    LeetCode "Combinations"
  • 原文地址:https://www.cnblogs.com/AbandonZHANG/p/4114253.html
Copyright © 2011-2022 走看看