zoukankan      html  css  js  c++  java
  • POJ 3281 Dining (网络流构图)

    题意】有F种食物和D种饮料,每种食物或饮料只能供一头牛享用,且每头牛只享用一种食物和一种饮料。现在有N头牛,每头牛都有自己喜欢的食物种类列表和饮料种类列表,问最多能使几头牛同时享用到自己喜欢的食物和饮料。 (1 <= F <= 100, 1 <= D <= 100, 1 <= N <= 100) 【建模方法】 此题的建模方法比较有开创性。以往一般都是左边一个点集表示供应并与源相连,右边一个点集表示需求并与汇相连。现在不同了,供应有两种资源,需求仍只有一个群体,怎么办?其实只要仔细思考一下最大流的建模原理,此题的构图也不是那么难想。最大流的正确性依赖于它的每一条s-t流都与一种实际方案一一对应。那么此题也需要用s-t流将一头牛和它喜欢的食物和饮料“串联”起来,而食物和饮料之间没有直接的关系,自然就想到把需求者(牛)放在中间,两边都是供应者(食物和饮料),由s, t将它们串起来构成一种分配方案。至此建模的方法也就很明显了:每种食物i 作为一个点并连边(s, i, 1),每种饮料j 作为一个点并连边(j, t, 1),将每头牛k拆成两个点k’, k’’并连边(k’, k’’, 1), (i, k’, 1), (k’’, j, 1),其中i, j 均是牛k喜欢的食物或饮料。求一次最大流即为结果。 PS:一定要注意将牛拆点连一条1的边,不然最大流结果就不是表示多少这样的牛了,而是表示多少组这样的食物+饮料。因为不拆点的话一头牛可以对应多组喜欢的饮料+食物,只有加一条边才能限制一头牛只能拿一种食物和饮料。  
    #include 
    #include 
    #include 
    #include 
    #include 
    #include 
    #define MID(x,y) ((x+y)/2)
    #define mem(a,b) memset(a,b,sizeof(a))
    using namespace std;
    const int MAXV = 405;
    const int MAXE = 50005;
    const int oo = 0x3fffffff;
    struct node{
        int u, v, flow;
        int opp;
        int next;
    };
    struct Dinic{
        node arc[MAXE];
        int vn, en, head[MAXV];     //vn点个数(包括源点汇点),en边个数
        int cur[MAXV];              //当前弧
        int q[MAXV];                //bfs建层次图时的队列
        int path[MAXE], top;        //存dfs当前最短路径的栈
        int dep[MAXV];              //各节点层次
        void init(int n){
            vn = n;
            en = 0;
            mem(head, -1);
        }
        void insert_flow(int u, int v, int flow){
            arc[en].u = u;
            arc[en].v = v;
            arc[en].flow = flow;
            arc[en].opp = en + 1;
            arc[en].next = head[u];
            head[u] = en ++;
    
            arc[en].u = v;
            arc[en].v = u;
            arc[en].flow = 0;       //反向弧
            arc[en].opp = en - 1;
            arc[en].next = head[v];
            head[v] = en ++;
        }
        bool bfs(int s, int t){
            mem(dep, -1);
            int lq = 0, rq = 1;
            dep[s] = 0;
            q[lq] = s;
            while(lq < rq){
                int u = q[lq ++];
                if (u == t){
                    return true;
                }
                for (int i = head[u]; i != -1; i = arc[i].next){
                    int v = arc[i].v;
                    if (dep[v] == -1 && arc[i].flow > 0){
                        dep[v] = dep[u] + 1;
                        q[rq ++] = v;
                    }
                }
            }
            return false;
        }
        int solve(int s, int t){
            int maxflow = 0;
            while(bfs(s, t)){
                int i, j;
                for (i = 1; i <= vn; i ++)  cur[i] = head[i];
                for (i = s, top = 0;;){
                    if (i == t){
                        int mink;
                        int minflow = 0x3fffffff;
                        for (int k = 0; k < top; k ++)
                            if (minflow > arc[path[k]].flow){
                                minflow = arc[path[k]].flow;
                                mink = k;
                            }
                        for (int k = 0; k < top; k ++)
                            arc[path[k]].flow -= minflow, arc[arc[path[k]].opp].flow += minflow;
                        maxflow += minflow;
                        top = mink;		//arc[mink]这条边流量变为0, 则直接回溯到该边的起点即可(这条边将不再包含在增广路内).
                        i = arc[path[top]].u;
                    }
                    for (j = cur[i]; j != -1; cur[i] = j = arc[j].next){
                        int v = arc[j].v;
                        if (arc[j].flow && dep[v] == dep[i] + 1)
                            break;
                    }
                    if (j != -1){
                        path[top ++] = j;
                        i = arc[j].v;
                    }
                    else{
                        if (top == 0)   break;
                        dep[i] = -1;
                        i = arc[path[-- top]].u;
                    }
                }
            }
            return maxflow;
        }
    }dinic;
    int main(){
    	//freopen("test.in", "r", stdin);
    	//freopen("test.out", "w", stdout);
        int n,f,d;
        scanf("%d %d %d", &n, &f, &d);
        dinic.init(2*n+f+d+2);
        for (int i = 1; i <= f; i ++){
            dinic.insert_flow(f+2*n+d+1, i, 1);       //1~f表示食物节点
        }
        for (int i = 1; i <= d; i ++){
            dinic.insert_flow(f+2*n+i, f+2*n+d+2, 1);   //f+2*n+1~f+2*n+d表示饮料节点
        }
        for (int i = 1; i <= n; i ++){
            int fi, di;
            scanf("%d %d", &fi, &di);
            dinic.insert_flow(f+2*i-1, f+2*i, 1);
            for (int j = 1; j <= fi; j ++){
                int tmp;
                scanf("%d", &tmp);
                dinic.insert_flow(tmp, f+2*i-1, 1);       //f+1~f+2*n表示牛节点
            }
            for (int j = 1; j <= di; j ++){
                int tmp;
                scanf("%d", &tmp);
                dinic.insert_flow(f+2*i, f+2*n+tmp, 1);
            }
        }
        printf("%d
    ", dinic.solve(f+2*n+d+1, f+2*n+d+2));
    	return 0;
    }
    
  • 相关阅读:
    LC 综合 中级算法笔记
    LC 212. 单词搜索2
    [NLP] 2.2 文本正规化 (Text Normalization)
    本地秘钥复制到github,实现两者之间的交互
    Python 实例化对象
    C# 左补齐+ 生成一个星期的日期
    hello world
    迭代器模式、观察者模式
    代理模式、桥接模式、装饰器模式、适配器模式
    外观模式、组合模式、享元模式
  • 原文地址:https://www.cnblogs.com/AbandonZHANG/p/4114260.html
Copyright © 2011-2022 走看看