【
题意】有F种食物和D种饮料,每种食物或饮料只能供一头牛享用,且每头牛只享用一种食物和一种饮料。现在有N头牛,每头牛都有自己喜欢的食物种类列表和饮料种类列表,问最多能使几头牛同时享用到自己喜欢的食物和饮料。 (1 <= F <= 100, 1 <= D <= 100, 1 <= N <= 100)
【
建模方法】
此题的建模方法比较有开创性。
以往一般都是左边一个点集表示供应并与源相连,右边一个点集表示需求并与汇相连。现在不同了,供应有两种资源,需求仍只有一个群体,怎么办?其实只要仔细思考一下最大流的建模原理,此题的构图也不是那么难想。
最大流的正确性依赖于它的每一条s-t流都与一种实际方案一一对应。那么此题也需要用s-t流将一头牛和它喜欢的食物和饮料“串联”起来,而食物和饮料之间没有直接的关系,自然就想到把
需求者(牛)放在中间,两边都是供应者(食物和饮料),由s, t将它们串起来构成一种分配方案。至此建模的方法也就很明显了:每种食物i 作为一个点并连边(s, i, 1),每种饮料j 作为一个点并连边(j, t, 1),将每头牛k拆成两个点k’, k’’并连边(k’, k’’, 1), (i, k’, 1), (k’’, j, 1),其中i, j 均是牛k喜欢的食物或饮料。求一次最大流即为结果。
PS:
一定要注意将牛拆点连一条1的边,不然最大流结果就不是表示多少这样的牛了,而是表示多少组这样的食物+饮料。因为不拆点的话一头牛可以对应多组喜欢的饮料+食物,只有加一条边才能限制一头牛只能拿一种食物和饮料。
#include
#include
#include
#include
#include
#include
#define MID(x,y) ((x+y)/2)
#define mem(a,b) memset(a,b,sizeof(a))
using namespace std;
const int MAXV = 405;
const int MAXE = 50005;
const int oo = 0x3fffffff;
struct node{
int u, v, flow;
int opp;
int next;
};
struct Dinic{
node arc[MAXE];
int vn, en, head[MAXV]; //vn点个数(包括源点汇点),en边个数
int cur[MAXV]; //当前弧
int q[MAXV]; //bfs建层次图时的队列
int path[MAXE], top; //存dfs当前最短路径的栈
int dep[MAXV]; //各节点层次
void init(int n){
vn = n;
en = 0;
mem(head, -1);
}
void insert_flow(int u, int v, int flow){
arc[en].u = u;
arc[en].v = v;
arc[en].flow = flow;
arc[en].opp = en + 1;
arc[en].next = head[u];
head[u] = en ++;
arc[en].u = v;
arc[en].v = u;
arc[en].flow = 0; //反向弧
arc[en].opp = en - 1;
arc[en].next = head[v];
head[v] = en ++;
}
bool bfs(int s, int t){
mem(dep, -1);
int lq = 0, rq = 1;
dep[s] = 0;
q[lq] = s;
while(lq < rq){
int u = q[lq ++];
if (u == t){
return true;
}
for (int i = head[u]; i != -1; i = arc[i].next){
int v = arc[i].v;
if (dep[v] == -1 && arc[i].flow > 0){
dep[v] = dep[u] + 1;
q[rq ++] = v;
}
}
}
return false;
}
int solve(int s, int t){
int maxflow = 0;
while(bfs(s, t)){
int i, j;
for (i = 1; i <= vn; i ++) cur[i] = head[i];
for (i = s, top = 0;;){
if (i == t){
int mink;
int minflow = 0x3fffffff;
for (int k = 0; k < top; k ++)
if (minflow > arc[path[k]].flow){
minflow = arc[path[k]].flow;
mink = k;
}
for (int k = 0; k < top; k ++)
arc[path[k]].flow -= minflow, arc[arc[path[k]].opp].flow += minflow;
maxflow += minflow;
top = mink; //arc[mink]这条边流量变为0, 则直接回溯到该边的起点即可(这条边将不再包含在增广路内).
i = arc[path[top]].u;
}
for (j = cur[i]; j != -1; cur[i] = j = arc[j].next){
int v = arc[j].v;
if (arc[j].flow && dep[v] == dep[i] + 1)
break;
}
if (j != -1){
path[top ++] = j;
i = arc[j].v;
}
else{
if (top == 0) break;
dep[i] = -1;
i = arc[path[-- top]].u;
}
}
}
return maxflow;
}
}dinic;
int main(){
//freopen("test.in", "r", stdin);
//freopen("test.out", "w", stdout);
int n,f,d;
scanf("%d %d %d", &n, &f, &d);
dinic.init(2*n+f+d+2);
for (int i = 1; i <= f; i ++){
dinic.insert_flow(f+2*n+d+1, i, 1); //1~f表示食物节点
}
for (int i = 1; i <= d; i ++){
dinic.insert_flow(f+2*n+i, f+2*n+d+2, 1); //f+2*n+1~f+2*n+d表示饮料节点
}
for (int i = 1; i <= n; i ++){
int fi, di;
scanf("%d %d", &fi, &di);
dinic.insert_flow(f+2*i-1, f+2*i, 1);
for (int j = 1; j <= fi; j ++){
int tmp;
scanf("%d", &tmp);
dinic.insert_flow(tmp, f+2*i-1, 1); //f+1~f+2*n表示牛节点
}
for (int j = 1; j <= di; j ++){
int tmp;
scanf("%d", &tmp);
dinic.insert_flow(f+2*i, f+2*n+tmp, 1);
}
}
printf("%d
", dinic.solve(f+2*n+d+1, f+2*n+d+2));
return 0;
}