zoukankan      html  css  js  c++  java
  • POJ 2409 Let it Bead (Polya定理)

    题意

    用k种颜色对n个珠子构成的环上色,旋转翻转后相同的只算一种,求不等价的着色方案数。

    思路


     

    Polya定理

    X是对象集合{1, 2, ……, n}, 设G是X上的置换群,用M种颜色染N种对象,则不同的染色方案数为: Polya定理   λ(g)表示置换g的轮换个数,且λ(g) = λ1(g) + λn(g) + …… + λn(g),其中λi(g)表示g中长度为i的轮换(循环)个数.
      本题是对一个n个珠子的圆珠的颜色,而圆珠的置换群有: Ⅰ翻转:1.当n为奇数时,有n种翻转,每种翻转的轴都是一个顶点和该顶点对边中点的连线,有n种置换,每种置换的轮换个数均为(n/2+1)。 2.当n为偶数时,有n种翻转,其中n/2种转轴是两个对应顶点连线,轮换个数为n/2+1;另n/2种转轴是两条对边中点的连线,轮换个数为n/2。 Ⅱ旋转:枚举旋转角度360/n*i,有n种旋转;第i种旋转有gcd(n, i)个轮换,每个轮换的长度都是n/gcd(n, i)。 然后带入公式即可.

    代码

      [cpp] #include <iostream> #include <cstdio> #include <cmath> #include <algorithm> #include <string> #include <cstring> #include <vector> #include <set> #include <stack> #include <queue> #define MID(x,y) ((x+y)/2) #define MEM(a,b) memset(a,b,sizeof(a)) #define REP(i, begin, end) for (int i = begin; i <= end; i ++) using namespace std; int gcd(int a, int b){ return b?gcd(b, a%b):a; } int main(){ //freopen("test.in", "r", stdin); //freopen("test.out", "w", stdout); int c, s; while(scanf("%d %d", &c, &s) != EOF){ long long res = 0; if (c + s == 0) break; if (s % 2 == 1){ res += (long long)s * pow(c, s/2+1); } else{ res += (long long)(s/2) * (pow(c, s/2) + pow(c, s/2+1)); } for (int i = 1; i <= s; i ++){ res += (long long)pow(c, gcd(s, i)); } printf("%I64d ", res/2/s); } return 0; } [/cpp]  
  • 相关阅读:
    DXF文件格式理解
    Qt Creator调试命令行参数
    qt编译错误:invalid new-expression of abstract class type "*"
    dxf文件解析库libdxf初探
    ubuntu linux编译libdxfrw
    CAD DWG/DXF文件C++解析库libdxfrw
    AutoCAD版本dxf文件与dxflib解析库支持探索
    Linux 6种日志查看方法(转)
    码率、分辨率、帧率和画质计算单位时间码流大小(转)
    纯手工打造车载车牌识别检测系统(转)
  • 原文地址:https://www.cnblogs.com/AbandonZHANG/p/4114347.html
Copyright © 2011-2022 走看看