zoukankan      html  css  js  c++  java
  • E

    Given a tree (a connected graph with no cycles), you have to find the farthest nodes in the tree. The edges of the tree are weighted and undirected. That means you have to find two nodes in the tree whose distance is maximum amongst all nodes.

    Input

    Input starts with an integer T (≤ 10), denoting the number of test cases.

    Each case starts with an integer n (2 ≤ n ≤ 30000) denoting the total number of nodes in the tree. The nodes are numbered from 0 to n-1. Each of the next n-1 lines will contain three integers u v w (0 ≤ u, v < n, u ≠ v, 1 ≤ w ≤ 10000)denoting that node u and v are connected by an edge whose weight is w. You can assume that the input will form a valid tree.

    Output

    For each case, print the case number and the maximum distance.

    Sample Input

    2

    4

    0 1 20

    1 2 30

    2 3 50

    5

    0 2 20

    2 1 10

    0 3 29

    0 4 50

    Sample Output

    Case 1: 100

    Case 2: 80

    题目大意:输入A,B,点以及a点b点之间的距离输出,,两点最远的距离

    AC代码:

    #include<cstdio>
    #include<vector>
    #include<iostream>
    #include<cstring>
    using namespace std;
    struct stu{
        int y,s;
    };
    vector<stu>ve[30010];
    int ans=0; 
    int xx;
    int mark[30010];
    void dfs(int x,int step){
        if(step>ans){
            ans=step;
            xx=x;
        }
        for(int i=0;i<ve[x].size();i++){
            if(mark[ve[x][i].y]==0){
                mark[ve[x][i].y]=1;
                dfs(ve[x][i].y,step+ve[x][i].s);
                mark[ve[x][i].y]=0;
            }
        }
    }
    int main()
    {
        int t;
        scanf("%d",&t);
        for(int j=1;j<=t;j++){
            int a,b,c,n;
            ans=0;
            scanf("%d",&n);
            
            for(int i=0;i<n-1;i++){
                scanf("%d %d %d",&a,&b,&c);
                ve[a].push_back({b,c});
                ve[b].push_back({a,c});
            }
            
            memset(mark,0,sizeof(mark));
            mark[1]=1;
            dfs(1,0);
            memset(mark,0,sizeof(mark));
            mark[xx]=1;
            dfs(xx,0);
            printf("Case %d: %d
    ",j,ans);
            for(int i=0;i<n;i++){
                ve[i].clear();
            }
        }
        return 0;
    }
  • 相关阅读:
    CSS实现元素居中原理解析
    Windows 下 Ionic 开发环境搭建
    JavaScript实现简单的双向数据绑定
    JavaScript之Promise对象
    前端工程师的进阶之路
    前端开发必备之chrome插件
    Javascript之Event Loop
    CentOS7 如何挂载网络设备
    mysql 全量备份以及增量备份
    zabbix 内网监控云服务器
  • 原文地址:https://www.cnblogs.com/Accepting/p/11243661.html
Copyright © 2011-2022 走看看