zoukankan      html  css  js  c++  java
  • 网络流

    先上板

    #include<cstdio>
    #include<cstdlib>
    #include<iostream>
    #include<algorithm>
    #include<cmath>
    #include<cstring>
    #include<queue>
    #include<vector>
    const int maxn=2050;
    const int INF=1e9;
    using namespace std;
    int ans,n,m,xx,yy,cur[maxn],ad[maxn],s=0,t=201,dis[maxn];
    struct edge{
        int from,to,flow,cup;
        edge(int from,int to,int flow,int cup):from(from),to(to),flow(flow),cup(cup){}
    };
    vector<edge>edges;
    vector<int>g[maxn];
    void add(int u,int v,int w){
       edges.push_back(edge(u,v,0,w));
       edges.push_back(edge(v,u,0,0));
       int t=edges.size();
       g[u].push_back(t-2);
       g[v].push_back(t-1);
    } 
    queue<int>que;
    int bfs(int s,int t){
      memset(dis,0,sizeof(dis));
      dis[s]=1;
      que.push(s);
      while(!que.empty() ){
        int x=que.front();que.pop() ;
        for(int i=0;i<g[x].size();i++){
          edge t=edges[g[x][i]];
          if(!dis[t.to]&&t.cup>t.flow){
            dis[t.to]=dis[x]+1;
            que.push(t.to);
          }
        }
      }
      return dis[t];
    }
    int dfs(int x,int a){
        if(x==t||a==0) return a;
        int fl=0,c;
        for(int &i=cur[x];i<g[x].size();i++){
           edge &t=edges[g[x][i]];
           if(dis[t.to]==dis[x]+1&&(c=dfs(t.to,min(a,t.cup-t.flow)))){
                t.flow+=c;
                edges[g[x][i]^1].flow-=c;
             fl+=c;
                a-=c;
           } 
           if(a==0) break;
        }
        return fl;
    }
    void Dinic(int s,int t){
        while(bfs(s,t)){
         memset(cur,0,sizeof(cur));
         ans+=dfs(s,INF);
        }
    }
    int main()
    {
       scanf("%d%d",&m,&n);
       for(;;){
         scanf("%d%d",&xx,&yy);
         if(xx==-1&&yy==-1) break;
         yy+=100;
         if(!ad[xx]) add(s,xx,1),ad[xx]=1;
         add(xx,yy,1);
         if(!ad[yy]) add(yy,t,1),ad[yy]=2;
       }
       Dinic(s,t);
         printf("%d
    ",ans);
         for(int i=0;i<edges.size();i++){
         edge x=edges[i];
         if(x.from !=s&&x.to !=t&&x.cup&&x.flow==x.cup){
             printf("%d %d
    ",x.from,x.to-100);
         }
       }
       return 0;
    }
    Dinic模板 当前弧优化
    #include<cstdio>
    #include<cstdlib>
    #include<iostream>
    #include<algorithm>
    #include<cmath>
    #include<cstring>
    #include<queue>
    #include<vector>
    const int maxn=100000+10; 
    using namespace std;
    int ans,flow,from,to,cup,n,m,s,t,a[maxn],p[maxn];
    struct Edge{
        int from,to,cup,flow;
        Edge(int from,int to,int cup,int flow):from(from),to(to),cup(cup),flow(flow){}
    };
    vector<Edge>edges;
    vector<int> G[maxn];
    void add(int from,int to,int cup){
        edges.push_back(Edge(from,to,cup,0));
        edges.push_back(Edge(to,from,0,0));
        int m=edges.size() ;
        G[from].push_back(m-2);
        G[from].push_back(m-1); 
    }
    queue<int>que;
    int bfs(int s,int t){
        //memset(p,-1,sizeof(p));
        memset(a,0,sizeof(a));
        while(!que.empty()) que.pop();
        que.push(s);
        a[s]=1e9;
        while(!que.empty() ){
            int x=que.front();que.pop();
            for(int i=0;i<G[x].size() ;i++){
                Edge tep=edges[G[x][i]];
                if(!a[tep.to ]&&tep.cup >tep.flow ){
                a[tep.to ]=min(a[x],tep.cup -tep.flow );
                p[tep.to ]=G[x][i];
                    que.push(tep.to );
                }
            }
            if(a[t]) return 1;
        } 
        return 0;
    }
    int EK(int s,int t){
        ans=0;
        while(bfs(s,t)){
            for(int i=t;i!=s;i=edges[p[i]].from){
                edges[p[i]].flow+=a[t];
                edges[p[i]^1].flow-=a[t];
            }
            ans+=a[t];
        }
        return ans;
    }
    int main()
    {
      scanf("%d%d%d%d",&n,&m,&s,&t);
      for(int i=1;i<=m;i++){
          scanf("%d%d%d",&from,&to,&cup);
          add(from,to,cup);
      } 
      printf("%d
    ",EK(s,t));
       return 0;
    }
    EK模板 (洛谷3376)
    //Twenty
    #include<cstdio>
    #include<cstdlib>
    #include<iostream>
    #include<algorithm>
    #include<cmath>
    #include<cstring>
    #include<queue>
    #include<vector>
    const int maxn=5005;
    const int maxm=50005;
    int a[maxn],vis[maxn],dis[maxn],ansf,ansv,u,v,c,w,n,m,s,t,pre[maxm];
    using namespace std;
    struct edge{
        int from,to,cup,flow,val;
        edge(int from,int to,int cup,int flow,int val):from(from),to(to),cup(cup),flow(flow),val(val){}
    };
    vector<int>g[maxn];
    vector<edge>edges;
    void add(int from,int to,int cup,int val){
        edges.push_back(edge(from,to,cup,0,val));
        edges.push_back(edge(to,from,0,0,-val));
        int x=edges.size();
        g[from].push_back(x-2);
        g[to].push_back(x-1); 
    }
    queue<int>que;
    int spfa(int s,int t){
        memset(vis,0,sizeof(vis));
        memset(dis,127,sizeof(dis));
        memset(a,0,sizeof(a));
        que.push(s); vis[s]=1;dis[s]=0;a[s]=1e9;
        while(!que.empty() ){
            int x=que.front() ;que.pop() ;
            vis[x]=0;
            for(int i=0;i<g[x].size();i++){
                edge now=edges[g[x][i]];
                if(now.flow<now.cup&&dis[now.to ]>dis[now.from ]+now.val ){
                    dis[now.to ]=dis[now.from ]+now.val ;
                    a[now.to]=min(a[now.from],now.cup-now.flow); 
                    pre[now.to]=g[x][i];
                    if(!vis[now.to ]){
                        vis[now.to]=1;
                        que.push(now.to); 
                    }
                }
            }
        }
        return a[t];     
    }
    void EK(int s,int t)
    {
        while(spfa(s,t)){
            for(int i=t;i!=s;i=edges[pre[i]].from){
               edges[pre[i]].flow+=a[t];
               ansv+=a[t]*edges[pre[i]].val;
               edges[pre[i]^1].flow-=a[t];
            }
            ansf+=a[t];
        }
    }
    int main()
    {
       scanf("%d%d%d%d",&n,&m,&s,&t);
       for(int i=1;i<=m;i++){
           scanf("%d%d%d%d",&u,&v,&c,&w);
           add(u,v,c,w);}
           EK(s,t);
           printf("%d %d",ansf,ansv);
       return 0;
    }
    最小费用最大流模板
    //Twenty
    #include<cstdio>
    #include<cstdlib>
    #include<iostream>
    #include<algorithm>
    #include<cmath>
    #include<cstring>
    #include<queue>
    #include<vector>
    const int maxn=299*299; 
    const int INF=0x7fffffff;
    int n,m,dis[maxn],s,t,cur[maxn],ans,du[maxn],x,y,d,u,dow[maxn];
    using namespace std;
    struct edge{
        int from,to,flow,cup;
        edge(int from,int to,int flow,int cup):from(from),to(to),flow(flow),cup(cup){}
    };
    vector<int>tmp;
    vector<edge>edges;
    vector<int>g[maxn];
    void add(int u,int v,int w){
       edges.push_back(edge(u,v,0,w));
       edges.push_back(edge(v,u,0,0));
       int t=edges.size();
       g[u].push_back(t-2);
       g[v].push_back(t-1);
    } 
    queue<int>que;
    int bfs(int s,int t){
      memset(dis,0,sizeof(dis));
      dis[s]=1;
      que.push(s);
      while(!que.empty() ){
        int x=que.front();que.pop() ;
        for(int i=0;i<g[x].size();i++){
          edge t=edges[g[x][i]];
          if(!dis[t.to]&&t.cup>t.flow){
            dis[t.to]=dis[x]+1;
            que.push(t.to);
          }
        }
      }
      return dis[t];
    }
    int dfs(int x,int a){
        if(x==t||a==0) return a;
        int fl=0,c;
        for(int &i=cur[x];i<g[x].size();i++){
           edge &t=edges[g[x][i]];
           if(dis[t.to]==dis[x]+1&&(c=dfs(t.to,min(a,t.cup-t.flow)))){
                t.flow+=c;
                edges[g[x][i]^1].flow-=c;
             fl+=c;
                a-=c;
           } 
           if(a==0) break;
        }
        return fl;
    }
    void Dinic(int s,int t){
        while(bfs(s,t)){
         memset(cur,0,sizeof(cur));
         ans+=dfs(s,INF);
        }
    }
    int main()
    {
        scanf("%d%d",&n,&m);
        s=0; t=n+1;
        for(int i=1;i<=m;i++){
            scanf("%d%d%d%d",&x,&y,&d,&u);
            add(x,y,u-d);
            tmp.push_back(edges.size()-2);
            dow[i]=d;
            du[y]+=d; du[x]-=d;
        }
        for(int i=1;i<=n;i++){
            if(du[i]>0) add(s,i,du[i]);
            else add(i,t,-du[i]);
        }
        Dinic(s,t);
        int hhh=g[0].size(),flag=1;
        for(int i=0;i<hhh;i++){
            edge ee=edges[g[0][i]];
            if(ee.flow<ee.cup ) {flag=0;break;}  
        }
        if(!flag) printf("NO
    ");
        else{
            printf("YES
    ");
            hhh=tmp.size(); int cnt=0;
            for(int i=0;i<hhh;i++){
            edge ee=edges[tmp[i]];
            printf("%d
    ",ee.flow+dow[++cnt]);
            }
        }
        return 0;
    }
    有上下界网络流模板 sgu 194

     

    说一下有上下界的网络流

    我们嫌下界麻烦,就要把它弄掉(YK说),于是我们把每条弧的容量变成上界减下界

    之后为了满足流量守恒定理,个人的理解是,一条从u到v的弧,u点少流出了down那么多,就直接从它到汇点加一条容量为down的弧,v点少流入了down,就从源点向它流加一条容量为-down的弧

    做法是对于每个点先把它流出的和流入的down统计一下,最后再加弧

     

    #include<cstdio>
    #include<cstdlib>
    #include<iostream>
    #include<algorithm>
    #include<cmath>
    #include<cstring>
    #include<queue>
    #include<vector>
    const int maxn=2050;
    const int INF=1e9+7;
    int f,s=0,t=201,ans,n,m,a,b,pre[maxn],fl[maxn],ad[maxn];
    using namespace std;
    struct edge{
        int from,to,cup,flow;
        edge(int from,int to,int cup,int flow):from(from),to(to),cup(cup),flow(flow){}
    };
    vector<edge>edges;
    vector<int>g[202];
    void add(int u,int v,int c){
        edges.push_back(edge(u,v,c,0));
        edges.push_back(edge(v,u,0,0));
        int t=edges.size();
        g[u].push_back(t-2);
        g[v].push_back(t-1);   
    }
    queue<int>que;
    int bfs(int s,int e){
        while(!que.empty() ) que.pop() ;
        memset(fl,0,sizeof(fl));
        fl[s]=INF;
        que.push(s);
        while(!que.empty() ){
        int x=que.front();que.pop();
         for(int i=0;i<g[x].size();i++){
             int xxx=g[x][i];
            edge t=edges[g[x][i]];
            if(!fl[t.to]&&t.flow<t.cup ){
              fl[t.to]=min(fl[x],t.cup-t.flow);
              pre[t.to]=g[x][i];
              if(fl[e]) return fl[e];
              que.push(t.to);
            }        
          }
        }
        return 0;
    }
    void EK(){
        while(f=bfs(s,t)){
           ans+=f;
           for(int i=pre[t];;i=pre[edges[i].from]){
              edges[i].flow+=f;
              edges[i^1].flow-=f;
              int l=edges[2].from;
              if(edges[i].from==s) break;
           }
             /*for(int i=0;i<edges.size();i++){
       cout<<i<<":"<<" ";
       int o=edges[i].from; cout<<o<<" ";
       o=edges[i].to; cout<<o<<" ";
       o=edges[i].cup; cout<<o<" ";
       o=edges[i].flow; cout<<""<<o<<endl;
       }
        int aa;
        aa++;*/
        }
    }
    int main()
    {
       scanf("%d%d",&m,&n);
       for(;;){
         scanf("%d%d",&a,&b);
         if(a==-1&&b==-1) break;
         if(!ad[a]) add(s,a,1),ad[a]=1; 
         add(a,b+100,1);
         if(!ad[b+100]) add(b+100,t,1),ad[b+100]=1;
       }/*
       for(int i=0;i<edges.size();i++){
       cout<<i<<":"<<" ";
       int o=edges[i].from; cout<<o<<" ";
       o=edges[i].to; cout<<o<<" ";
       o=edges[i].cup; cout<<o<" ";
       o=edges[i].flow; cout<<o<<endl;
       }*/
       EK();
       printf("%d
    ",ans);
       for(int i=0;i<edges.size();i++){
         edge x=edges[i];
         if(x.from !=s&&x.to !=t&&x.cup&&x.flow==x.cup){
             printf("%d %d
    ",x.from,x.to-100);
         }
       }
       return 0;
    }
    模板 飞行员配对问题

     

    #include<cstdio>
    #include<cstdlib>
    #include<cstring>
    #include<cmath>
    #include<algorithm>
    #include<queue>
    using namespace std;
    const int maxn=420;
    const int INF=0x7fffffff;
    int inline read(){
        char ch=getchar(); int f=1,ret=0;
        while(ch>'9'||ch<'0') {if(ch=='-') f=-1; ch=getchar();}
        for(;ch>='0'&&ch<='9';ch=getchar()) ret=ret*10+ch-'0';
        return ret*f;
    }
    struct edge{
        int v,w,next;
    }e[maxn];
    int n,m,fir[maxn],dis[maxn];
    int cnt=0;
    int add(int u,int v,int w){
        e[cnt].v =v;e[cnt].w =w; e[cnt].next =fir[u]; fir[u]=cnt++;
        e[cnt].v =u;e[cnt].w =0; e[cnt].next =fir[v]; fir[v]=cnt++;
    }
    queue<int>q;
    int bfs(){
        memset(dis,0,sizeof(dis));
        dis[1]=1; q.push(1);
        while(!q.empty()){
            int u=q.front() ;q.pop();
            for(int i=fir[u];i!=-1;i=e[i].next ){
                if(dis[e[i].v ]==0&&e[i].w ){
                    dis[e[i].v]=dis[u]+1;
                    q.push(e[i].v);
                }
            }
        }
        return dis[n];
    }
    
    int dfs(int s,int limit){
        if(s==n) return limit;
        int cost=0,tmp=0;
        for(int i=fir[s];i!=-1;i=e[i].next ){
            if(e[i].w &&dis[e[i].v]==dis[s]+1){
                 tmp=dfs(e[i].v ,min(limit-cost,e[i].w));
                 if(tmp!=0){
                     e[i].w -=tmp;e[i^1].w+=tmp;cost+=tmp;if(cost==limit) break;
              }
              else dis[e[i].v ]=-1;
            }
        }
        return cost;
    }
    
    int dinic(){
        int ans=0;
        while(bfs())
          ans+=dfs(1,INF);
        return ans;
    }
    
    int main()
    {
        memset(fir,-1,sizeof(fir));
        m=read(); n=read();
        for(int i=1;i<=m;i++){
            int u,v,w;
            u=read();v=read();w=read();
            add(u,v,w);
        }
        printf("%d",dinic());    
        return 0;
    }
    模板 草地排水

     

     

    一些题

    1.最小割 tyvj P1338 QQ农场

    http://www.tyvj.cn/p/1338

    对于每个点摘它就不能摘它周围四个,可以明显看出这是一个二分图,然后sum-最小割就是答案。

    //Twenty
    #include<cstdio>
    #include<cstdlib>
    #include<iostream>
    #include<algorithm>
    #include<cmath>
    #include<cstring>
    #include<queue>
    #include<vector>
    using namespace std;
    const int maxn=299*299;
    const int INF=0x7fffffff;
    int ans,s=0,sum,t,n,a[maxn],dis[maxn],cur[maxn],x,y;
    struct edge{
        int from,to,flow,cup;
        edge(int from,int to,int flow,int cup):from(from),to(to),flow(flow),cup(cup){}
    };
    vector<edge>edges;
    vector<int>g[maxn];
    void add(int u,int v,int w){
       edges.push_back(edge(u,v,0,w));
       edges.push_back(edge(v,u,0,0));
       int t=edges.size();
       g[u].push_back(t-2);
       g[v].push_back(t-1);
    } 
    queue<int>que;
    int bfs(int s,int t){
      memset(dis,0,sizeof(dis));
      dis[s]=1;
      que.push(s);
      while(!que.empty() ){
        int x=que.front();que.pop() ;
        for(int i=0;i<g[x].size();i++){
          edge t=edges[g[x][i]];
          if(!dis[t.to]&&t.cup>t.flow){
            dis[t.to]=dis[x]+1;
            que.push(t.to);
          }
        }
      }
      return dis[t];
    }
    int dfs(int x,int a){
        if(x==t||a==0) return a;
        int fl=0,c;
        for(int &i=cur[x];i<g[x].size();i++){
           edge &t=edges[g[x][i]];
           if(dis[t.to]==dis[x]+1&&(c=dfs(t.to,min(a,t.cup-t.flow)))){
                t.flow+=c;
                edges[g[x][i]^1].flow-=c;
             fl+=c;
                a-=c;
           } 
           if(a==0) break;
        }
        return fl;
    }
    void Dinic(int s,int t){
        while(bfs(s,t)){
         memset(cur,0,sizeof(cur));
         ans+=dfs(s,INF);
        }
    }
    int check(int i,int j){
        y=(i-1)*n+j;
        return (i>=1&&i<=n&&j>=1&&j<=n);
    }
    int main()
    {
        scanf("%d",&n);
        t=n*n+1;
        for(int i=1;i<=n;i++){
            int flag=i;
        for(int j=1;j<=n;j++){
            x=(i-1)*n+j;
            scanf("%d",&a[x]);
            sum+=a[x];
            if(flag%2){
            if(check(i+1,j)) 
             add(x,y,INF); 
            if(check(i-1,j)) 
             add(x,y,INF);
            if(check(i,j+1)) 
             add(x,y,INF);
            if(check(i,j-1)) 
             add(x,y,INF);
             add(s,x,a[x]);
            }
            else add(x,t,a[x]);
            ++flag;
        }
        }
        Dinic(s,t);
        printf("%d
    ",sum-ans);
        return 0;
    }
    tyvj P1338 QQ农场.cpp

     

    2.BZOJ 1834网络扩容

    先求出最大流,然后每条弧上再加一条容量为INF费用为扩容费用的弧,从源点流入需要扩容的大小,跑一遍费用流。

    //Twenty
    #include<cstdio>
    #include<cstdlib>
    #include<iostream>
    #include<algorithm>
    #include<cmath>
    #include<cstring>
    #include<queue>
    #include<vector>
    using namespace std;
    const int INF=0x7fffffff;
    const int maxn=(5000+29)*2; 
    int nowfl,aa,b,c,d,n,m,k,dis[maxn],cur[maxn],s,t,ans1,ans2,vis[maxn],woc;
    int ps[maxn][3],a[maxn],pre[maxn];
    struct edge{
        int from,to,flow,cup,cost;
        edge(int from,int to,int flow,int cup,int cost):from(from),to(to),flow(flow),cup(cup),cost(cost){}
    };
    vector<edge>edges;
    vector<int>g[maxn];
    void add(int u,int v,int w,int cost){
       edges.push_back(edge(u,v,0,w,cost));
       edges.push_back(edge(v,u,0,0,-cost));
       int t=edges.size();
       g[u].push_back(t-2);
       g[v].push_back(t-1);
    } 
    queue<int>que;
    int bfs(int s,int t){
      memset(dis,0,sizeof(dis));
      dis[s]=1;
      que.push(s);
      while(!que.empty() ){
        int x=que.front();que.pop() ;
        for(int i=0;i<g[x].size();i++){
          edge t=edges[g[x][i]];
          if(!dis[t.to]&&t.cup>t.flow){
            dis[t.to]=dis[x]+1;
            que.push(t.to);
          }
        }
      }
      return dis[t];
    }
    int dfs(int x,int a){
        if(x==t||a==0) return a;
        int fl=0,c;
        for(int &i=cur[x];i<g[x].size();i++){
           edge &t=edges[g[x][i]];
           if(dis[t.to]==dis[x]+1&&(c=dfs(t.to,min(a,t.cup-t.flow)))){
                t.flow+=c;
                edges[g[x][i]^1].flow-=c;
             fl+=c;
                a-=c;
           } 
           if(a==0) break;
        }
        return fl;
    }
    void Dinic(int s,int t){
        while(bfs(s,t)){
         memset(cur,0,sizeof(cur));
         ans1+=dfs(s,INF);
        }
    }
    int spfa(int s,int t){
        memset(vis,0,sizeof(vis));
        memset(dis,127,sizeof(dis));
        memset(a,0,sizeof(a));
        que.push(s); vis[s]=1; dis[s]=0; a[s]=woc;
        while(!que.empty() ){
            int x=que.front() ;que.pop() ;
            vis[x]=0;
            for(int i=0;i<g[x].size();i++){
                edge now=edges[g[x][i]];
                if(now.flow<now.cup&&dis[now.to ]>dis[now.from ]+now.cost ){
                    dis[now.to ]=dis[now.from ]+now.cost ;
                    a[now.to]=min(a[now.from],now.cup-now.flow); 
                    pre[now.to]=g[x][i];
                    if(!vis[now.to ]){
                        vis[now.to]=1;
                        que.push(now.to); 
                    }
                }
            }
        }
        return a[t];     
    }
    void EK(int s,int t)
    {
        woc=k;
        while(woc&&spfa(s,t)){
            for(int i=t;i!=s;i=edges[pre[i]].from){
               edges[pre[i]].flow+=a[t];
               edges[pre[i]^1].flow-=a[t];
            }
            woc-=a[t];
            ans2+=(dis[t]*a[t]);
        }
    }
    int main()
    {
        scanf("%d%d%d",&n,&m,&k);
        s=1,t=n;
        for(int i=1;i<=m;i++){
        scanf("%d%d%d%d",&aa,&b,&c,&d);
        ps[i][0]=aa; ps[i][1]=b; ps[i][2]=d;
        add(aa,b,c,0);
        }
        Dinic(s,t);
        printf("%d ",ans1);
        for(int i=1;i<=m;i++)
        add(ps[i][0],ps[i][1],INF,ps[i][2]);
        EK(s,t);
        printf("%d
    ",ans2);
        return 0;
    }
    BZOJ 1834 网络扩容

     

    3.codevs 1227 方格取数

    最大费用流

    要求取m次,拆点,每个点向虚点之间连两条边,一条控制联通,容量为INF,费用为0,一条控制费用,容量为1,。然后每个点向能到达的点连容量为m的边,源点向起点连容量为m的边。

    //Twenty
    #include<cstdio>
    #include<cstdlib>
    #include<iostream>
    #include<algorithm>
    #include<cmath>
    #include<cstring>
    #include<queue>
    #include<vector>
    const int INF=0x7fffffff;
    const int maxn=105*105;
    using namespace std;
    int b[maxn],n,m,xx,yy,zz,cur[maxn],s,t,dis[maxn],vis[maxn],a[maxn],pre[maxn];
    int vv,ansv,ansf;
    using namespace std;
    struct edge{
        int from,to,cup,flow,val;
        edge(int from,int to,int cup,int flow,int val):from(from),to(to),cup(cup),flow(flow),val(val){}
    };
    vector<int>g[maxn];
    vector<edge>edges;
    void add(int from,int to,int cup,int val){
        edges.push_back(edge(from,to,cup,0,val));
        edges.push_back(edge(to,from,0,0,-val));
        int x=edges.size();
        g[from].push_back(x-2);
        g[to].push_back(x-1); 
    }
    queue<int>que;
    int spfa(int s,int t){
        memset(vis,0,sizeof(vis));
        memset(dis,127,sizeof(dis));
        memset(a,0,sizeof(a));
        que.push(s); vis[s]=1;dis[s]=0;a[s]=1e9;
        while(!que.empty() ){
            int x=que.front() ;que.pop() ;
            vis[x]=0;
            for(int i=0;i<g[x].size();i++){
                edge now=edges[g[x][i]];
                if(now.flow<now.cup&&dis[now.to ]>dis[now.from ]+now.val ){
                    dis[now.to ]=dis[now.from ]+now.val ;
                    a[now.to]=min(a[now.from],now.cup-now.flow); 
                    pre[now.to]=g[x][i];
                    if(!vis[now.to ]){
                        vis[now.to]=1;
                        que.push(now.to); 
                    }
                }
            }
        }
        return a[t];     
    }
    void EK(int s,int t)
    {
        while(spfa(s,t)){
            for(int i=t;i!=s;i=edges[pre[i]].from){
               edge &ee=edges[pre[i]];
               ee.flow+=a[t];
               edges[pre[i]^1].flow-=a[t];
            }
            ansv+=(dis[t]*a[t]);
        }
    }
    int check(int i,int j){
        vv=(i-1)*n+j;
        return (i>=1&&i<=n&&j>=1&&j<=n);
    }
    int main()
    {
        scanf("%d%d",&n,&m);
        for(int i=1;i<=n;i++)
        for(int j=1;j<=n;j++){
            scanf("%d",&b[(i-1)*n+j]);
            b[(i-1)*n+j]*=-1;
        }
        s=1,t=n*n+n*n;
        for(int i=1;i<=n;i++)
            for(int j=1;j<=n;j++)
                {
                    int uu=(i-1)*n+j;
                    if(uu==1) add(uu,uu+n*n,m,0);
                    else {add(uu,uu+n*n,INF,0);
                    add(uu,uu+n*n,1,b[uu]);}
                    if(check(i+1,j)) 
                        add(uu+n*n,vv,m,0);
                    if(check(i,j+1)) 
                        add(uu+n*n,vv,m,0);
                }
        EK(s,t);
        if(m==0) printf("0
    ");
        else
        printf("%d
    ",(ansv+b[1])*-1);
        return 0;
    }
    codevs 1227 方格取数

    4.codevs 1022 覆盖

    http://codevs.cn/problem/1022/

    二分图匹配水题 显然图是二分图 每个点判断一下可不可覆盖(是不是水塘)。

    //Twenty
    #include<cstdio>
    #include<cstdlib>
    #include<iostream>
    #include<algorithm>
    #include<cmath>
    #include<cstring>
    #include<queue>
    #include<vector>
    using namespace std;
    const int maxn=105*105;
    const int INF=0x7fffffff;
    int s=0,t,n,m,k,a[maxn],ans,dis[maxn],cur[maxn],x,y,u,v,flag;
    struct edge{
        int from,to,flow,cup;
        edge(int from,int to,int flow,int cup):from(from),to(to),flow(flow),cup(cup){}
    };
    vector<edge>edges;
    vector<int>g[maxn];
    void add(int u,int v,int w){
       edges.push_back(edge(u,v,0,w));
       edges.push_back(edge(v,u,0,0));
       int t=edges.size();
       g[u].push_back(t-2);
       g[v].push_back(t-1);
    } 
    queue<int>que;
    int bfs(int s,int t){
      memset(dis,0,sizeof(dis));
      dis[s]=1;
      que.push(s);
      while(!que.empty() ){
        int x=que.front();que.pop() ;
        for(int i=0;i<g[x].size();i++){
          edge t=edges[g[x][i]];
          if(!dis[t.to]&&t.cup>t.flow){
            dis[t.to]=dis[x]+1;
            que.push(t.to);
          }
        }
      }
      return dis[t];
    }
    int dfs(int x,int a){
        if(x==t||a==0) return a;
        int fl=0,c;
        for(int &i=cur[x];i<g[x].size();i++){
           edge &t=edges[g[x][i]];
           if(dis[t.to]==dis[x]+1&&(c=dfs(t.to,min(a,t.cup-t.flow)))){
                t.flow+=c;
                edges[g[x][i]^1].flow-=c;
             fl+=c;
                a-=c;
           } 
           if(a==0) break;
        }
        return fl;
    }
    void Dinic(int s,int t){
        while(bfs(s,t)){
         memset(cur,0,sizeof(cur));
         ans+=dfs(s,INF);
        }
    }
    int check(int i,int j){
        v=(i-1)*m+j;
        return (!a[v]&&i>=1&&i<=n&&j>=1&&j<=n);
    }
    int main()
    {
        scanf("%d%d%d",&n,&m,&k);
        t=n*m+1;
        for(int i=1;i<=k;i++){
            scanf("%d%d",&x,&y);
            a[(x-1)*m+y]=1;
        } 
        for(int i=1;i<=n;i++)
         {flag=i;
         for(int j=1;j<=m;j++){
            u=(i-1)*m+j;
            if(!a[u]&&flag%2){
              if(check(i+1,j)) 
                 add(u,v,INF); 
              if(check(i-1,j)) 
                 add(u,v,INF);
              if(check(i,j+1)) 
                 add(u,v,INF);
              if(check(i,j-1)) 
                 add(u,v,INF);
              add(s,u,1);
            }
            else if(!a[u]) 
                add(u,t,1);
            ++flag;
         }
         }
        Dinic(s,t);
        printf("%d
    ",ans);
        return 0;
    }
    codevs 1022 覆盖

     

    5.最小路径覆盖问题

    先把每个点单独为一条路径,将两条路径连起来就可以减少一条路径,考虑将哪些点连起来,把所有点增加一个,分为两份,就成了二分图匹配问题,就可以用网络流搞了。

    //Twenty
    #include<cstdio>
    #include<cstdlib>
    #include<iostream>
    #include<algorithm>
    #include<cmath>
    #include<cstring>
    #include<queue>
    #include<vector>
    using namespace std;
    const int maxn=30000+5;
    const int INF=0x7fffffff;
    int ans,n,m,x,y,cur[maxn],s,t,dis[maxn],ts,in[maxn],p[maxn];
    int a[maxn],nx[maxn],qq[maxn];
    struct edge{
        int from,to,flow,cup;
        edge(int from,int to,int flow,int cup):from(from),to(to),flow(flow),cup(cup){}
    };
    vector<edge>edges;
    vector<int>g[maxn];
    void add(int u,int v,int w){
       edges.push_back(edge(u,v,0,w));
       edges.push_back(edge(v,u,0,0));
       int t=edges.size();
       g[u].push_back(t-2);
       g[v].push_back(t-1);
       edge ee=edges[t-1];
       int xxxx=1;
       xxxx++;
    } 
    queue<int>que;
    int bfs(int s,int t){
        memset(a,0,sizeof(a));
        while(!que.empty()) que.pop();
        que.push(s);
        a[s]=1e9;
        while(!que.empty() ){
            int x=que.front();que.pop();
            for(int i=0;i<g[x].size() ;i++){
                edge tep=edges[g[x][i]];
                if(!a[tep.to ]&&tep.cup >tep.flow ){
                a[tep.to ]=min(a[x],tep.cup -tep.flow );
                p[tep.to ]=g[x][i];
                    que.push(tep.to );
                }
            }
            if(a[t]) return 1;
        } 
        return 0;
    }
    int EK(int s,int t){
        ans=0;
        while(bfs(s,t)){
            for(int i=t;i!=s;i=edges[p[i]].from){
                edges[p[i]].flow+=a[t];
                edges[p[i]^1].flow-=a[t];
            }
            ans+=a[t];
        }
        return ans;
    }
    void printedge(){
        for(int i=0;i<edges.size();i++){
            edge ee=edges[i];
            printf("【%d】
    ",i+1);
            printf("from: %d
    ",ee.from);
            printf("to: %d
    ",ee.to);
            printf("flow: %d
    ",ee.flow);
            printf("cup: %d
    ",ee.cup);
        }
    } 
    void print(){
        int hhh=edges.size();
        for(int i=0;i<hhh;i++){
            edge ee=edges[i];
            if(ee.from>=1&&ee.from<=n&&ee.to>=n+1&&ee.to<=n+n&&ee.flow==1){
                nx[ee.from]=ee.to-n;
                in[ee.to-n]++;
            }
        }
        for(int i=1;i<=n;i++)
            if(!in[i]){
                int tmp=i;
                printf("%d ",tmp);
                while(nx[tmp]){
                     printf("%d ",nx[tmp]);
                     tmp=nx[tmp];
                }
                printf("
    ");
            }
    }
    int main()
    {
        scanf("%d%d",&n,&m);
        s=0;t=n*n+1;
        for(int i=1;i<=n;i++)
        {add(s,i,1);
        add(i+n,t,1);}
        for(int i=1;i<=m;i++){
        scanf("%d%d",&x,&y);
        add(x,y+n,1); 
        }
        EK(s,t);
        ts=n-ans;
        print();
        printf("%d
    ",ts);
        return 0;
    }
    最小路径覆盖问题

     

    6.BZOJ 1305 Dance跳舞

    http://www.lydsy.com/JudgeOnline/problem.php?id=1305

    首先男生女生可以看做一个二分图,每个人有喜欢的人和不喜欢的人,显然可以拆点,我们把喜欢的叫真的点,不喜欢的叫假的点。

    每个人最大可以忍受不喜欢的人的个数m,从每个真男孩向假男孩连容量为m的点,从每个假女孩向真女孩连容量为m的边。相互喜欢的真男孩连向真女孩容量为1的边。

    然后二分答案,二分一个最大可以跳的场数k,从源点向每个真男孩连容量为k的边,每个真女孩向汇点连容量为k的边,跑一遍最大流,检查每条连向汇点的边是否满流。

    //Twenty
    #include<cstdio>
    #include<cstdlib>
    #include<iostream>
    #include<algorithm>
    #include<cmath>
    #include<cstring>
    #include<queue>
    #include<vector>
    const int maxn=205*205;
    const int INF=0x7fffffff;
    int n,k,a[55][55],l=0,r=50;
    char ch[maxn];
    using namespace std;
    int s,t,ans,cur[maxn],dis[maxn],cs;
    struct edge{
        int from,to,flow,cup;
        edge(int from,int to,int flow,int cup):from(from),to(to),flow(flow),cup(cup){}
    };
    vector<edge>edges;
    vector<int>g[maxn];
    void add(int u,int v,int w){
       edges.push_back(edge(u,v,0,w));
       edges.push_back(edge(v,u,0,0));
       int t=edges.size();
       g[u].push_back(t-2);
       g[v].push_back(t-1);
    } 
    queue<int>que;
    int bfs(int s,int t){
      memset(dis,0,sizeof(dis));
      dis[s]=1;
      que.push(s);
      while(!que.empty() ){
        int x=que.front();que.pop() ;
        for(int i=0;i<g[x].size();i++){
          edge t=edges[g[x][i]];
          if(!dis[t.to]&&t.cup>t.flow){
            dis[t.to]=dis[x]+1;
            que.push(t.to);
          }
        }
      }
      return dis[t];
    }
    int dfs(int x,int a){
        if(x==t||a==0) return a;
        int fl=0,c;
        for(int &i=cur[x];i<g[x].size();i++){
           edge &t=edges[g[x][i]];
           if(dis[t.to]==dis[x]+1&&(c=dfs(t.to,min(a,t.cup-t.flow)))){
                t.flow+=c;
                edges[g[x][i]^1].flow-=c;
             fl+=c;
                a-=c;
           } 
           if(a==0) break;
        }
        return fl;
    }
    void Dinic(int s,int t){
        while(bfs(s,t)){
         memset(cur,0,sizeof(cur));
         ans+=dfs(s,INF);
        }
    }
    int check(int x){
        int hhh=edges.size() ;
        for(int i=0;i<hhh;i++){
            edge &ee=edges[i];
            ee.flow=0;
            if(ee.from==s) {
                if(ee.to<=n)
                    ee.cup=x;
                else ee.cup=0;
            }
            if(ee.to==t) {
                if(ee.from>=2*n+1&&ee.from<=3*n)
                    {ee.cup=x;
                     int debugg=1;
                     debugg++;
                     }
                else ee.cup=0;
            }
        }
        ans=0;
        Dinic(s,t);
        return (ans>=n*x);
    }
    int main()
    {
        scanf("%d%d",&n,&k);
        t=n*4+1;
        for(int i=1;i<=n;i++){
            scanf("%s",ch);
            for(int j=0;j<n;j++)
                if(ch[j]=='Y') a[i][j+1]=1; 
        }
        for(int i=1;i<=n;i++){
            add(s,i,0);   
            add(i,n+i,k); //1~n 真男孩 n~2n 假男孩 
            add(2*n+i,t,0); 
            add(3*n+i,2*n+i,k); //2n~3n 真女孩 3n~4n 假女孩 
            for(int j=1;j<=n;j++){
                if(a[i][j]) add(i,2*n+j,1);   
                else add(n+i,3*n+j,1);
            }
        }
        //if(!check(1)) printf("0
    ");
        //else{
            while(l<=r){
                int mid=(l+r)>>1;
                if(check(mid)) cs=mid,l=mid+1;
                else r=mid-1;
            //}
            }
        printf("%d
    ",cs);    
        return 0;
    }
    BZOJ 1305 Dance跳舞

     

    7.BZOJ 2127 happiness

    http://www.lydsy.com/JudgeOnline/problem.php?id=2127

    很经典的文理分科问题,一开始瘦学长直接抬出了一个图,非常懵逼,后来问了YYH大神才懂了

    首先这是一个二分图,然后这是一个最小割,因为可以容易地发现要么同选文,要么同选理,要么一文一理,所以A选文 A选理 B选文 B选理 同选文 同选理6条边中我们要割去一些边,并且使得割去的边之和最小,就是一个最小割模型了。

    那么如何建图呢,

    YYH 说 我们不要去考虑它剩下的是什么,只考虑割去的是什么。(也因此中间要建成双向边)

    就有了如下的图,可以自己沿着所以可行的割割一遍,

    (注:两个文两个理其实是一个点 源点和汇点)

     

    实际操作的时候,我们把边的容量都乘以2,最后再除以二得出答案。

    //Twenty
    #include<cstdio>
    #include<cstdlib>
    #include<iostream>
    #include<algorithm>
    #include<cmath>
    #include<cstring>
    #include<queue>
    #include<vector>
    using namespace std;
    const int maxn=105*105;
    const int INF=0x7fffffff;
    int n,m,x,s,t,cur[maxn],uu,vv;
    int jz[7][maxn],ans,dis[maxn],sum;
    struct edge{
        int from,to,flow,cup;
        edge(int from,int to,int flow,int cup):from(from),to(to),flow(flow),cup(cup){}
    };
    vector<edge>edges;
    vector<int>g[maxn];
    void add(int u,int v,int w){
       edges.push_back(edge(u,v,0,w));
       edges.push_back(edge(v,u,0,0));
       int t=edges.size();
       g[u].push_back(t-2);
       g[v].push_back(t-1);
    } 
    queue<int>que;
    int bfs(int s,int t){
      memset(dis,0,sizeof(dis));
      dis[s]=1;
      que.push(s);
      while(!que.empty() ){
        int x=que.front();que.pop() ;
        for(int i=0;i<g[x].size();i++){
          edge t=edges[g[x][i]];
          if(!dis[t.to]&&t.cup>t.flow){
            dis[t.to]=dis[x]+1;
            que.push(t.to);
          }
        }
      }
      return dis[t];
    }
    int dfs(int x,int a){
        if(x==t||a==0) return a;
        int fl=0,c;
        for(int &i=cur[x];i<g[x].size();i++){
           edge &t=edges[g[x][i]];
           if(dis[t.to]==dis[x]+1&&(c=dfs(t.to,min(a,t.cup-t.flow)))){
                t.flow+=c;
                edges[g[x][i]^1].flow-=c;
             fl+=c;
                a-=c;
           } 
           if(a==0) break;
        }
        return fl;
    }
    void Dinic(int s,int t){
        while(bfs(s,t)){
         memset(cur,0,sizeof(cur));
         ans+=dfs(s,INF);
        }
    }
    int check(int i,int j){
        vv=(i-1)*n+j;
        return (i>=1&&i<=n&&j>=1&&j<=m);
    }
    int main()
    {
        scanf("%d%d",&n,&m);
        s=0;t=n*m+1;
        for(int tt=1;tt<=6;tt++){
        for(int i=1;i<=n;i++){
        if((tt==3||tt==4)&&i==n) continue;
        for(int j=1;j<=m;j++){
            if((tt==5||tt==6)&&j==m) continue;
            int u=(i-1)*n+j;
            scanf("%d",&jz[tt][u]);
            sum+=jz[tt][u];
        }
        }
        }
        for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++){
            uu=(i-1)*n+j;
            int tw=0,tl=0;
            if(check(i+1,j)){
                int tmp=jz[3][uu]+jz[4][uu];
                add(uu,vv,tmp); 
                add(vv,uu,tmp); 
                tw+=jz[3][uu]; tl+=jz[4][uu];
            }
            if(check(i-1,j)){
                tw+=jz[3][vv]; tl+=jz[4][vv];
            }
            if(check(i,j+1)){
                int tmp=(jz[5][uu]+jz[6][uu]);
                add(uu,vv,tmp);
                add(vv,uu,tmp);
                tw+=jz[5][uu]; tl+=jz[6][uu];
            }
            if(check(i,j-1)){
                tw+=jz[5][vv]; tl+=jz[6][vv];
            }
            //if(i*j%2){
                //add(s,uu,jz[2][uu]+tl);
                //add(uu,t,jz[1][uu]+tw);
            //}
            //else{
                add(s,uu,jz[1][uu]*2+tw); 
                add(uu,t,jz[2][uu]*2+tl);
            //}
               //用Double会出问题,所以都乘2 
               //建图关键不在如何流而在割去的是什么 
               //sum为五部分之和,割去相应的边方案要合法 
        }
        Dinic(s,t);
        printf("%d",sum-ans/2);
        return 0;
    }
    BZOJ 2127 happiness
  • 相关阅读:
    ionic3 学习记录
    关于华为 IOT平台的框架理解
    遥测浮点数的计算 十进制浮点型转为十六进制浮点型
    关于104规约的认识补充
    Php 十六进制短浮点数转十进制,带符号位
    yii2 项目初始化
    java Socket启动服务
    ionic3 关于屏幕方向问题
    ionic3 cordova ionic-native插件
    java javac 的区别
  • 原文地址:https://www.cnblogs.com/Achenchen/p/7469318.html
Copyright © 2011-2022 走看看