Description
现有一个(n)个点,(m)条无向边的图。要求求出从编号为(1)的点到编号为(n)的点经过的边的边权的绝对值之和最小的路径。特别的,每经过一条边,图上所有边的边权就会改变,若原边权为(x),新的边权是(frac{1}{1-x})。
答案保留(3)位小数
Input
第一行两个整数(m),(n),表示点数和边数。
接下来(m)行,每行三个整数(u),(v),(x),表示有一条连接(u),(v),边权为(x)。
Output
若(1)和(n)联通,输出最小的边权的绝对值之和
否则输出"chu ti ren shi zhi zhang"(没有引号)。
Sample Input
3 1
2 3 2
Sample Output
chu ti ren shi zhi zhang
Data Constraint
对于(30)%的数据,(n<=500),(m<=3000)
对于(100)%的数据,(n<=100000),(m<=300000),(2<=x<=1000)
Solution
对于(frac{1}{1-x})这个式子,我们要记住它有一些性质,给一个数(x),
(x->frac{1}{1-x}->1-frac{1}{x}->x),所以这个数经过(3)次变换之后就会变回原样
我们把每个点拆成(3)个点,连边,跑一下最短路,就好了
Code
#include<iostream>
#include<cstdio>
#include<cmath>
#include<queue>
using namespace std;
#define eps 0.00001
#define MAXN 5000100
struct rec {
int nxt, ver;
double dis;
} t[MAXN];
struct Rec {
int k;
double w;
};
bool operator < (const Rec &x, const Rec &y) {
return x.w > y.w;
}
int n, m, u, v, x, cnt;
int head[MAXN];
bool flag[MAXN];
Rec s;
priority_queue <Rec> h;
inline int read() {
int s = 0, w = 1;
char c = getchar();
for (; !isdigit(c); c = getchar()) if (c == '-') w = -1;
for (; isdigit(c); c = getchar()) s = (s << 1) + (s << 3) + (c ^ 48);
return s * w;
}
inline void add(int u, int v, double w) {
t[++cnt].nxt = head[u], t[cnt].ver = v, t[cnt].dis = w, head[u] = cnt;
}
int main() {
freopen("pb.in", "r", stdin);
freopen("pb.out", "w", stdout);
n = read(), m = read();
for (register int i = 1; i <= m; i++) {
u = read(), v = read(), x = read();
double w = x;
add(u, v + n, fabs(w)), add(v, u + n, fabs(w));
add(u + n, v + 2 * n, fabs(1 / (1 - w))), add(v + n, u + 2 * n, fabs(1 / (1 - w)));
add(u + 2 * n, v, fabs(1 - 1 / w)), add(v + 2 * n, u, fabs(1 - 1 / w));
}
h.push((Rec){1, 0});
while (!h.empty()) {
s = h.top();
h.pop();
if (flag[s.k]) continue;
flag[s.k] = true;
if (s.k == n || s.k == 2 * n || s.k == 3 * n) break;
for (register int i = head[s.k]; i; i = t[i].nxt) {
int v = t[i].ver;
if (!flag[v])
h.push((Rec){v, s.w + t[i].dis});
}
}
if (s.w <= eps) printf("chu ti ren shi zhi zhang");
else printf("%.3f", s.w);
return 0;
}