zoukankan      html  css  js  c++  java
  • 第三周 1.31-2.6

    1.31

    HDU 5617 Jam's maze

    不会dp。

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 using namespace std;
     5 const int mod = 5201314;
     6 int dp[555][555], cpy[555][555];
     7 char G[555][555];
     8 
     9 int main(void)
    10 {
    11     int T;
    12     scanf("%d", &T);
    13     while(T--)
    14     {
    15         int N;
    16         scanf("%d", &N);
    17         for(int i = 0; i < N; i++) scanf("%s", G[i]);
    18         memset(dp, 0, sizeof(dp));
    19         dp[0][N-1] = G[0][0] == G[N-1][N-1];
    20         for(int k = 1; k < N; k++)
    21         {
    22             memcpy(cpy, dp, sizeof(cpy));
    23             memset(dp, 0, sizeof(dp));
    24             for(int x1 = 0; x1 <= k; x1++)
    25             {
    26                 for(int x2 = N - 1; x2 >= N - k - 1; x2--)
    27                 {
    28                     int y1 = k - x1, y2 = 2 * N - 2 - k - x2;
    29                     if(G[x1][y1] == G[x2][y2])
    30                     {
    31                         if(x1 != k && x2 != N - 1 - k) dp[x1][x2] += cpy[x1][x2];
    32                         if(x1 != k && x2 != N - 1) dp[x1][x2] += cpy[x1][x2+1];
    33                         if(x1 != 0 && x2 != N - 1 - k) dp[x1][x2] += cpy[x1-1][x2];
    34                         if(x1 != 0 && x2 != N - 1) dp[x1][x2] += cpy[x1-1][x2+1];
    35                         dp[x1][x2] %= mod;
    36                     }
    37                 }
    38             }
    39         }
    40         int ans = 0;
    41         for(int i = 0; i < N; i++) ans = ( ans + dp[i][i] ) % mod;
    42         printf("%d
    ", ans);
    43     }
    44     return 0;
    45 }
    Aguin

    2.1

    什么都没干。

    2.2

    CF 621 D Rat Kwesh and Cheese

    精度之迷。

    #include <iostream>
    #include <cstdio>
    #include <cmath>
    using namespace std;
    long double x, y, z;
    char * s[] = {
        "",
        "x^y^z", "x^z^y", "(x^y)^z", "(x^z)^y",
        "y^x^z", "y^z^x", "(y^x)^z", "(y^z)^x",
        "z^x^y", "z^y^x", "(z^x)^y", "(z^y)^x"
    };
    
    long double f(int op)
    {
        if(x < 1.001 && y < 1.001 && z < 1.001)
        {
            if(op == 1) return pow(y, z) * log(x);
            if(op == 2) return pow(z, y) * log(x);
            if(op == 3) return z * y * log(x);
    
            if(op == 5) return pow(x, z) * log(y);
            if(op == 6) return pow(z, x) * log(y);
            if(op == 7) return x * z * log(y);
    
            if(op == 9) return pow(x, y) * log(z);
            if(op == 10) return pow(y, x) * log(z);
            if(op == 11) return x * y * log(z);
        }
    
        if(op == 1) return log(log(x)) + z * log(y);
        if(op == 2) return log(log(x)) + y * log(z);
        if(op == 3) return log(z * y * log(x));
    
        if(op == 5) return log(log(y)) + z * log(x);
        if(op == 6) return log(log(y)) + x * log(z);
        if(op == 7) return log(z * x * log(y));
    
        if(op == 9) return log(log(z)) + y * log(x);
        if(op == 10) return log(log(z)) + x * log(y);
        if(op == 11) return log(x * y * log(z));
    
    }
    
    int main(void)
    {
        cin >> x >> y >> z;
        long double M = -1e300;
        int pos;
        if(x < 1.001 && y < 1.001 && z < 1.001 || x > 0.999)
            for(int i = 1; i < 4; i++)
                if(f(i) > M) M = f(i), pos = i;
        if(x < 1.001 && y < 1.001 && z < 1.001 || y > 0.999)
            for(int i = 5; i < 8; i++)
                if(f(i) > M) M = f(i), pos = i;
        if(x < 1.001 && y < 1.001 && z < 1.001 || z > 0.999)
            for(int i = 9; i < 12; i++)
                if(f(i) > M) M = f(i), pos = i;
        printf("%s
    ", s[pos]);
        return 0;
    }
    Aguin

    2.3

    CF 618 D Hamiltonian Spanning Tree

    不是很懂你们贪心。

     1 #include <iostream>
     2 #include <cstdio>
     3 using namespace std;
     4 typedef long long LL;
     5 const int maxn = 2e5 + 10;
     6 int cnt, h[maxn], deg[maxn];
     7 int num;
     8 
     9 struct edge
    10 {
    11     int to, pre;
    12 } e[maxn<<1];
    13 
    14 void add(int from, int to)
    15 {
    16     cnt++;
    17     e[cnt].pre = h[from];
    18     e[cnt].to = to;
    19     h[from] = cnt;
    20 }
    21 
    22 int dfs(int p, int f)
    23 {
    24     int tmp = 0;
    25     for(int i = h[p]; i; i = e[i].pre)
    26     {
    27         int to = e[i].to;
    28         if(to == f) continue;
    29         tmp += dfs(to, p);
    30     }
    31     if(!tmp) return 1;
    32     else if(tmp == 1){ num++; return 1;}
    33     else{ num += 2; return 0; }
    34 }
    35 
    36 int main(void)
    37 {
    38     int n, leaf = 0;
    39     LL x, y;
    40     scanf("%d %I64d %I64d", &n, &x, &y);
    41     for(int i = 1; i < n; i++)
    42     {
    43         int u, v;
    44         scanf("%d %d", &u, &v);
    45         add(u, v), add(v, u);
    46         deg[u]++, deg[v]++;
    47     }
    48     for(int i = 1; i <= n; i++) if(deg[i] == 1) leaf++;
    49     if(x >= y) printf("%I64d
    ", y * (n - 2) + (leaf >= n - 1 ? x : y));
    50     else dfs(1, 0), printf("%I64d
    ", x * num + y * (n - 1 - num));
    51     return 0;
    52 }
    Aguin

     2.4-2.5

    什么都没干。

    2.6

    HDU 5623 KK's Number

    这个出题人有点萌。

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <algorithm>
     4 using namespace std;
     5 typedef long long LL;
     6 const int maxn = 5e4 + 10;
     7 bool cmp(LL x, LL y){return x > y;}
     8 LL a[maxn], dp[maxn];
     9 
    10 int main(void)
    11 {
    12     int T;
    13     scanf("%d", &T);
    14     while(T--)
    15     {
    16         int N;
    17         scanf("%d", &N);
    18         for(int i = 0; i < N; i++) scanf("%I64d", a + i);
    19         sort(a, a + N, cmp);
    20         LL M = a[N] = 0LL;
    21         for(int i = N - 1; i >= 0; i--)
    22         {
    23             dp[i] = a[i] - M;
    24             M = max(M, dp[i]);
    25         }
    26         printf("%I64d
    ", M);
    27     }
    28     return 0;
    29 }
    Aguin
  • 相关阅读:
    webpack的安装与配置
    npm初始化
    gitignore的配置
    git本地已有文件夹和远程仓库对应
    git 配置
    开发环境和开发工具
    git 码云使用教程
    递归
    LeetCode 392. 判断子序列
    MongoDB基本操作
  • 原文地址:https://www.cnblogs.com/Aguin/p/5172953.html
Copyright © 2011-2022 走看看