zoukankan      html  css  js  c++  java
  • 第一周 2.28-3.5

    2.28-2.29

    什么都没干。

    3.1

    CF 633 E Startup Funding

    对于每个l找r的时候p是单峰的,但是不能三分因为可能有平台。

    但是max递增min递减可以二分两个的交点,两边check一下。

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <algorithm>
     4 using namespace std;
     5 const int maxn = 1e6 + 10;
     6 int n, v[maxn], c[maxn];
     7 int rmqv[maxn][20], rmqc[maxn][20];
     8 int tmp[maxn];
     9 
    10 void RMQ_init()
    11 {
    12     for(int i = 1; i <= n; i++) rmqv[i][0] = v[i];
    13     for(int j = 1; (1 << j) <= n; j++)
    14         for(int i = 1; i + ( 1 << j ) - 1 <= n; i++)
    15             rmqv[i][j] = max(rmqv[i][j-1] , rmqv[i+(1<<j-1)][j-1]);
    16     for(int i = 1; i <= n; i++) rmqc[i][0] = c[i];
    17     for(int j = 1; (1 << j) <= n; j++)
    18         for(int i = 1; i + ( 1 << j ) - 1 <= n; i++)
    19             rmqc[i][j] = min(rmqc[i][j-1] , rmqc[i+(1<<j-1)][j-1]);
    20 }
    21 
    22 int qv(int l, int r)
    23 {
    24     int k = 0;
    25     while( ( 1 << (k + 1) ) <= r - l + 1 ) k++;
    26     return max(rmqv[l][k], rmqv[r-(1<<k)+1][k]);
    27 }
    28 
    29 int qc(int l, int r)
    30 {
    31     int k = 0;
    32     while( ( 1 << (k + 1) ) <= r - l + 1 ) k++;
    33     return min(rmqc[l][k], rmqc[r-(1<<k)+1][k]);
    34 }
    35 
    36 int main(void)
    37 {
    38     int k;
    39     scanf("%d %d", &n, &k);
    40     for(int i = 1; i <= n; i++) scanf("%d", v + i);
    41     for(int i = 1; i <= n; i++) scanf("%d", c + i);
    42     RMQ_init();
    43     for(int i = 1; i <= n; i++)
    44     {
    45         int l = i, r = n, m;
    46         while(l < r)
    47         {
    48             m = r - (r - l) / 2;
    49             if(100 * qv(i, m) < qc(i, m)) l = m;
    50             else r = m - 1;
    51         }
    52         tmp[i] = min(100 * qv(i, l), qc(i, l));
    53         if(l < n) tmp[i] = max(tmp[i], min(100 * qv(i, l+1), qc(i, l+1)));
    54     }
    55     sort(tmp + 1, tmp + 1 + n);
    56     double ans = 0.0, b = 1.0 * k / n;
    57     for(int i = 1; i <= n - k + 1; i++)
    58     {
    59         ans += b * tmp[i];
    60         b *= 1.0 * (n - k + 1 - i) / (n - i);
    61     }
    62     printf("%.9f
    ", ans);
    63     return 0;
    64 }
    Aguin

    3.2

    TC SRM683 DIV1 250 MoveStones

    POJ2940 PLUS。

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <vector>
     4 using namespace std;
     5 typedef long long LL;
     6 
     7 class MoveStones
     8 {
     9 public:
    10 
    11     long long get(vector <int> a, vector <int> b)
    12     {
    13         int n = a.size();
    14         LL sa = 0LL, sb = 0LL;
    15         for(int i = 0; i < n; i++)
    16         {
    17             sa += (LL) a[i];
    18             sb += (LL) b[i];
    19         }
    20         if(sa != sb) return -1;
    21         LL ret = 1e18;
    22         for(int i = 0; i < n; i++)
    23         {
    24             LL sum = 0LL, tmp = 0LL;
    25             for(int j = 0; j < n; j++)
    26             {
    27                 tmp = tmp + a[(i+j)%n] - b[(i+j)%n];
    28                 sum += tmp > 0 ? tmp : -tmp;
    29             }
    30             ret = min(ret, sum);
    31         }
    32         return ret;
    33     }
    34 
    35 };
    Aguin。

    3.3

    CF 633 F The Chocolate Spree

    树dp。从边考虑。

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <algorithm>
     5 using namespace std;
     6 typedef long long LL;
     7 const int maxn = 1e5 + 10;
     8 int cnt, h[maxn];
     9 LL a[maxn], dp[maxn<<1], dp1[maxn<<1];
    10 
    11 struct edge
    12 {
    13     int fm, to, pre;
    14 } e[maxn<<1];
    15 
    16 void add(int from, int to)
    17 {
    18     cnt++;
    19     e[cnt].pre = h[from];
    20     e[cnt].fm = from;
    21     e[cnt].to = to;
    22     h[from] = cnt;
    23 }
    24 
    25 LL dfs(int x)
    26 {
    27     if(dp1[x] != -1) return dp1[x];
    28     LL ret = a[e[x].to];
    29     for(int i = h[e[x].to]; i; i = e[i].pre)
    30         if(e[i].to != e[x].fm)
    31             ret = max(ret, dfs(i) + a[e[x].to]);
    32     return dp1[x] = ret;
    33 }
    34 
    35 LL DP(int x)
    36 {
    37     if(dp[x] != -1) return dp[x];
    38     LL ret = 0LL, m1 = 0LL, m2 = 0LL;
    39     for(int i = h[e[x].to]; i; i = e[i].pre)
    40     {
    41         if(e[i].to == e[x].fm) continue;
    42         ret = max(ret, DP(i));
    43         LL tmp = dfs(i);
    44         if(tmp >= m1) m2 = m1, m1 = tmp;
    45         else if(tmp > m2) m2 = tmp;
    46     }
    47     ret = max(ret, m1 + m2 + a[e[x].to]);
    48     return dp[x] = ret;
    49 }
    50 
    51 int main(void)
    52 {
    53     int n;
    54     scanf("%d", &n);
    55     memset(dp, -1, sizeof(dp));
    56     memset(dp1, -1, sizeof(dp1));
    57     for(int i = 1; i <= n; i++) scanf("%I64d", a + i);
    58     for(int i = 1; i < n; i++)
    59     {
    60         int u, v;
    61         scanf("%d %d", &u, &v);
    62         add(u, v), add(v, u);
    63     }
    64     LL ans = 0LL;
    65     for(int i = 1; i <= cnt; i += 2) ans = max(ans, DP(i) + DP(i+1));
    66     printf("%I64d
    ", ans);
    67     return 0;
    68 }
    Aguin

    3.4

    什么都没干。

    3.5

    CF 633 G Yash And Trees

    bitset优化。爆int没发现QAQ。

      1 #include <iostream>
      2 #include <cstdio>
      3 #include <bitset>
      4 using namespace std;
      5 const int maxn = 2e5 + 10;
      6 int n, m, a[maxn], t[maxn<<1];
      7 bitset<1111> r;
      8 
      9 //tree
     10 int cnt, h[maxn];
     11 struct edge
     12 {
     13     int to, pre;
     14 } e[maxn<<1];
     15 
     16 void add(int from, int to)
     17 {
     18     cnt++;
     19     e[cnt].pre = h[from];
     20     e[cnt].to = to;
     21     h[from] = cnt;
     22 }
     23 
     24 //dfs
     25 int timer, dfn[maxn][2];
     26 void dfs(int p, int f)
     27 {
     28     dfn[p][0] = ++timer;
     29     t[timer] = a[p];
     30     for(int i = h[p]; i; i = e[i].pre)
     31     {
     32         int to = e[i].to;
     33         if(to == f) continue;
     34         dfs(to, p);
     35     }
     36     dfn[p][1] = ++timer;
     37     t[timer] = a[p];
     38 }
     39 
     40 //seg_tree
     41 bitset<1111> b[maxn<<2];
     42 int tag[maxn<<2];
     43 void gather(int p)
     44 {
     45     b[p] = b[p<<1] | b[p<<1|1];
     46 }
     47 
     48 void Rotate(int p, int x)
     49 {
     50     x %= m;
     51     b[p] = ((b[p] << x) | (b[p] >> (m-x))) & r;
     52 }
     53 
     54 void push(int p)
     55 {
     56     if(tag[p])
     57     {
     58         tag[p<<1] = (tag[p<<1] + tag[p]) % m;
     59         tag[p<<1|1] = (tag[p<<1|1] + tag[p]) % m;
     60         Rotate(p<<1, tag[p]);
     61         Rotate(p<<1|1, tag[p]);
     62         tag[p] = 0;
     63     }
     64 }
     65 
     66 void build(int p, int l, int r)
     67 {
     68     tag[p] = 0;
     69     if(l < r)
     70     {
     71         int mid = (l + r) >> 1;
     72         build(p<<1, l, mid);
     73         build(p<<1|1, mid + 1, r);
     74         gather(p);
     75     }
     76     else b[p][t[l]] = 1;
     77 }
     78 
     79 void modify(int p, int tl, int tr, int l, int r, int v)
     80 {
     81     if(tr < l || r < tl) return;
     82     if(l <= tl && tr <= r)
     83     {
     84         tag[p] = (tag[p] + v) % m;
     85         Rotate(p, v);
     86         return;
     87     }
     88     push(p);
     89     int mid = (tl + tr) >> 1;
     90     modify(p<<1, tl, mid, l, r, v);
     91     modify(p<<1|1, mid+1, tr, l, r, v);
     92     gather(p);
     93 }
     94 
     95 bitset<1111> query(int p, int tl, int tr, int l, int r)
     96 {
     97     bitset<1111> ret, tmp;
     98     if(tr < l || r < tl) return ret;
     99     if(l <= tl && tr <= r) return b[p];
    100     push(p);
    101     int mid = (tl + tr) >> 1;
    102     ret = query(p<<1, tl, mid, l, r);
    103     tmp = query(p<<1|1, mid+1, tr, l, r);
    104     ret |= tmp;
    105     return ret;
    106 }
    107 
    108 //prime
    109 int pr[1111];
    110 bitset<1111> bb;
    111 void GetPrime()
    112 {
    113     for(int i = 2; i < 1111; i++)
    114     {
    115         if(!pr[i]) pr[++pr[0]] = i;
    116         for(int j = 1; j <= pr[0] && pr[j] * i < 1111; j++)
    117         {
    118             pr[i*pr[j]] = 1;
    119             if(i % pr[j] == 0) break;
    120         }
    121     }
    122     for(int i = 1; pr[i] <= 1000; i++) bb[pr[i]] = 1;
    123     for(int i = 0; i < m; i++) r[i] = 1;
    124 }
    125 
    126 int main(void)
    127 {
    128     scanf("%d %d", &n, &m);
    129     GetPrime();
    130     for(int i = 1; i <= n; i++) scanf("%d", a + i), a[i] %= m;
    131     for(int i = 1; i < n; i++)
    132     {
    133         int u, v;
    134         scanf("%d %d", &u, &v);
    135         add(u, v), add(v, u);
    136     }
    137     dfs(1, 0);
    138     build(1, 1, timer);
    139     int q;
    140     scanf("%d", &q);
    141     while(q--)
    142     {
    143         int op, v, x;
    144         scanf("%d", &op);
    145         if(op == 1)
    146         {
    147             scanf("%d %d", &v, &x);
    148             modify(1, 1, timer, dfn[v][0], dfn[v][1], x);
    149         }
    150         else
    151         {
    152             scanf("%d", &v);
    153             bitset<1111> ret = query(1, 1, timer, dfn[v][0], dfn[v][1]);
    154             int ans = (bb & ret).count();
    155             printf("%d
    ", ans);
    156         }
    157     }
    158     return 0;
    159 }
    Aguin

    CF 633 H Fibonacci-ish II

    不是很懂Fib。

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <algorithm>
     4 #include <cmath>
     5 using namespace std;
     6 typedef long long LL;
     7 const int maxn = 3e4 + 10;
     8 int a[maxn], b[maxn], c[maxn];
     9 int n, m, fib[maxn];
    10 
    11 //seg_tree
    12 int sum[2][maxn<<2], sz[maxn<<2];
    13 void gather(int p)
    14 {
    15     sz[p] = sz[p<<1] + sz[p<<1|1];
    16     sum[0][p] = (sum[0][p<<1] + fib[sz[p<<1]+1] * sum[0][p<<1|1] + fib[sz[p<<1]] * sum[1][p<<1|1]) % m;
    17     if(sz[p<<1]) sum[1][p] = (sum[1][p<<1] + fib[sz[p<<1]] * sum[0][p<<1|1] + fib[sz[p<<1]-1] * sum[1][p<<1|1]) % m;
    18     else sum[1][p] = sum[1][p<<1|1];
    19 }
    20 
    21 void modify(int p, int tl, int tr, int x, int v)
    22 {
    23     if(tr < x || x < tl) return;
    24     if(tl == tr)
    25     {
    26         sz[p] = v;
    27         sum[0][p] = v ? b[tl] % m : 0;
    28         return;
    29     }
    30     int mid = (tl + tr) >> 1;
    31     modify(p<<1, tl, mid, x, v);
    32     modify(p<<1|1, mid+1, tr, x, v);
    33     gather(p);
    34 }
    35 
    36 //Mo's
    37 int ans[maxn];
    38 int block, cnt[maxn];
    39 struct query
    40 {
    41     int id, l, r;
    42 }Q[maxn];
    43 
    44 bool cmp(query A, query B)
    45 {
    46     if(A.l / block != B.l / block) return A.l / block < B.l / block;
    47     return A.r < B.r;
    48 }
    49 
    50 int main(void)
    51 {
    52     scanf("%d %d", &n, &m);
    53     fib[1] = fib[2] = 1 % m;
    54     for(int i = 3; i <= n; i++) fib[i] = (fib[i-2] + fib[i-1]) % m;
    55     for(int i = 1; i <= n; i++) scanf("%d", a + i), b[i] = a[i];
    56     sort(b + 1, b + 1 + n);
    57     int tot = unique(b + 1, b + 1 + n) - b - 1;
    58     for(int i = 1; i <= n; i++)
    59         c[i] = lower_bound(b + 1, b + 1 + tot, a[i]) - b;
    60     int q;
    61     scanf("%d", &q);
    62     for(int i = 0; i < q; i++)
    63         scanf("%d %d", &Q[i].l, &Q[i].r), Q[i].id = i;
    64     block = sqrt(n), sort(Q, Q + q, cmp);
    65     int l = 1, r = 0;
    66     for(int i = 0; i < q; i++)
    67     {
    68         while(r < Q[i].r)
    69         {
    70             r++, cnt[c[r]]++;
    71             if(cnt[c[r]] == 1) modify(1, 1, n, c[r], 1);
    72         }
    73         while(r > Q[i].r)
    74         {
    75             cnt[c[r]]--;
    76             if(!cnt[c[r]]) modify(1, 1, n, c[r], 0);
    77             r--;
    78         }
    79         while(l < Q[i].l)
    80         {
    81             cnt[c[l]]--;
    82             if(!cnt[c[l]]) modify(1, 1, n, c[l], 0);
    83             l++;
    84         }
    85         while(l > Q[i].l)
    86         {
    87             l--, cnt[c[l]]++;
    88             if(cnt[c[l]] == 1) modify(1, 1, n, c[l], 1);
    89         }
    90         ans[Q[i].id] = sum[0][1];
    91     }
    92     for(int i = 0; i < q; i++) printf("%d
    ", ans[i]);
    93     return 0;
    94 }
    Aguin

    补BC。

    HDU 5637 Transform

    二进制大坑。

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <queue>
     5 #include <algorithm>
     6 using namespace std;
     7 typedef long long LL;
     8 const LL mod = 1e9 + 7;
     9 const int maxn = 1e5 + 10;
    10 int a[22], dist[maxn<<1];
    11 
    12 int main(void)
    13 {
    14     int T;
    15     scanf("%d", &T);
    16     while(T--)
    17     {
    18         int n, m;
    19         scanf("%d %d", &n, &m);
    20         for(int i = 1; i <= n; i++) scanf("%d", a + i);
    21         memset(dist, -1, sizeof(dist));
    22         queue<int> q;
    23         dist[0] = 0;
    24         q.push(0);
    25         while(!q.empty())
    26         {
    27             int v = q.front(); q.pop();
    28             for(int i = 0; i < 18; i++)
    29             {
    30                 int nxt = v ^ (1 << i);
    31                 if(nxt < (maxn<<1) && dist[nxt] == -1)
    32                 {
    33                     dist[nxt] = dist[v] + 1;
    34                     q.push(nxt);
    35                 }
    36             }
    37             for(int i = 1; i <= n; i++)
    38             {
    39                 int nxt = v ^ a[i];
    40                 if(nxt < (maxn<<1) && dist[nxt] == -1)
    41                 {
    42                     dist[nxt] = dist[v] + 1;
    43                     q.push(nxt);
    44                 }
    45             }
    46         }
    47         LL ans = 0LL;
    48         for(int i = 1; i <= m; i++)
    49         {
    50             int s, t;
    51             scanf("%d %d", &s, &t);
    52             ans = (ans + (LL) dist[s^t] * i) % mod;
    53         }
    54         printf("%I64d
    ", ans);
    55     }
    56     return 0;
    57 }
    Aguin

    HDU 5638 Toposort

    乱搞。

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <queue>
     5 #include <vector>
     6 #include <algorithm>
     7 using namespace std;
     8 typedef long long LL;
     9 const LL mod = 1e9 + 7;
    10 const int maxn = 1e5 + 10;
    11 int in[maxn], vis[maxn], ans[maxn];
    12 vector<int> G[maxn];
    13 
    14 int main(void)
    15 {
    16     int T;
    17     scanf("%d", &T);
    18     while(T--)
    19     {
    20         int n, m, k;
    21         scanf("%d %d %d", &n, &m, &k);
    22         memset(in, 0, sizeof(in));
    23         memset(vis, 0, sizeof(vis));
    24         for(int i = 1; i <= n; i++) G[i].clear();
    25         for(int i = 0; i < m; i++)
    26         {
    27             int u, v;
    28             scanf("%d %d", &u, &v);
    29             G[u].push_back(v);
    30             in[v]++;
    31         }
    32         priority_queue<int> pq;
    33         for(int i = 1; i <= n; i++)
    34             if(in[i] <= k) pq.push(-i), vis[i] = 1;
    35         int pos = 0;
    36         while(!pq.empty())
    37         {
    38             int v = -pq.top(); pq.pop();
    39             vis[v] = 0;
    40             if(in[v] > k) continue;
    41             k -= in[v], in[v] = -1;
    42             ans[++pos] = v;
    43             int sz = G[v].size();
    44             for(int j = 0; j < sz; j++)
    45             {
    46                 int nxt = G[v][j];
    47                 if(in[nxt] == -1) continue;
    48                 in[nxt]--;
    49                 if(!vis[nxt] && in[nxt] <= k) pq.push(-nxt), vis[nxt] = 1;
    50             }
    51         }
    52         LL ret = 0LL;
    53         for(int i = 1; i <= n; i++) ret = (ret + (LL) ans[i] * i) % mod;
    54         printf("%I64d
    ", ret);
    55     }
    56     return 0;
    57 }
    Aguin

    HDU 5636 Shortest Path

    瞎写。

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cmath>
     4 #include <algorithm>
     5 using namespace std;
     6 typedef long long LL;
     7 const LL mod = 1e9 + 7;
     8 int a[4], b[4];
     9 int dist[7][7];
    10 
    11 int main(void)
    12 {
    13     int T;
    14     scanf("%d", &T);
    15     while(T--)
    16     {
    17         int n, m;
    18         scanf("%d %d", &n, &m);
    19         for(int i = 1; i <= 3; i++) scanf("%d %d", a + i, b + i);
    20         LL ans = 0LL;
    21         for(int i = 1; i <= m; i++)
    22         {
    23             scanf("%d %d", a, b);
    24             for(int j = 1; j <= 3; j++)
    25             {
    26                 for(int k = 1; k <= 3; k++) dist[j][k] = abs(a[j] - a[k]);
    27                 for(int k = 4; k <= 6; k++) dist[j][k] = abs(a[j] - b[k-3]);
    28             }
    29             for(int j = 4; j <= 6; j++)
    30             {
    31                 for(int k = 1; k <= 3; k++) dist[j][k] = abs(b[j-3] - a[k]);
    32                 for(int k = 4; k <= 6; k++) dist[j][k] = abs(b[j-3] - b[k-3]);
    33             }
    34             for(int j = 1; j <= 3; j++) dist[j][j+3] = dist[j+3][j] = min(1, dist[j][j+3]);
    35             for(int j = 1; j <= 6; j++)
    36                 for(int k = 1; k <= 6; k++)
    37                     for(int l = 1; l <= 6; l++)
    38                         dist[k][l] = min(dist[k][l], dist[k][j] + dist[j][l]);
    39             int tmp = abs(a[0] - b[0]);
    40             for(int j = 1; j <= 3; j++)
    41             {
    42                 for(int k = 1; k <= 3; k++) tmp = min(tmp, abs(a[0] - a[j]) + dist[j][k] + abs(b[0] - a[k]));
    43                 for(int k = 4; k <= 6; k++) tmp = min(tmp, abs(a[0] - a[j]) + dist[j][k] + abs(b[0] - b[k-3]));
    44             }
    45             for(int j = 4; j <= 6; j++)
    46             {
    47                 for(int k = 1; k <= 3; k++) tmp = min(tmp, abs(a[0] - b[j-3]) + dist[j][k] + abs(b[0] - a[k]));
    48                 for(int k = 4; k <= 6; k++) tmp = min(tmp, abs(a[0] - b[j-3]) + dist[j][k] + abs(b[0] - b[k-3]));
    49             }
    50             ans = (ans + (LL) tmp * i) % mod;
    51         }
    52         printf("%I64d
    ", ans);
    53     }
    54     return 0;
    55 }
    Aguin

    HDU 5659 Deletion

    二分二分图。

      1 #include <iostream>
      2 #include <cstdio>
      3 #include <cstring>
      4 #include <algorithm>
      5 #include <queue>
      6 using namespace std;
      7 const int INF = 1e9;
      8 const int maxn = 2e5 + 10;
      9 int lv[maxn], it[maxn];
     10 int cnt, h[maxn];
     11 int fm[maxn], to[maxn];
     12 
     13 struct edge
     14 {
     15     int to, pre, cap;
     16 } e[maxn<<1];
     17 
     18 void init()
     19 {
     20     memset(h, -1, sizeof(h));
     21     cnt = 0;
     22 }
     23 
     24 void add(int from, int to, int cap)
     25 {
     26     e[cnt].pre = h[from];
     27     e[cnt].to = to;
     28     e[cnt].cap = cap;
     29     h[from] = cnt;
     30     cnt++;
     31 }
     32 
     33 void ad(int from, int to, int cap)
     34 {
     35     add(from, to, cap);
     36     add(to, from, 0);
     37 }
     38 
     39 void bfs(int s)
     40 {
     41     memset(lv, -1, sizeof(lv));
     42     queue<int> q;
     43     lv[s] = 0;
     44     q.push(s);
     45     while(!q.empty())
     46     {
     47         int v = q.front(); q.pop();
     48         for(int i = h[v]; i >= 0; i = e[i].pre)
     49         {
     50             int cap = e[i].cap, to = e[i].to;
     51             if(cap > 0 && lv[to] < 0)
     52             {
     53                 lv[to] = lv[v] + 1;
     54                 q.push(to);
     55             }
     56         }
     57     }
     58 }
     59 
     60 int dfs(int v, int t, int f)
     61 {
     62     if(v == t) return f;
     63     for(int &i = it[v]; i >= 0; i = e[i].pre)
     64     {
     65         int &cap = e[i].cap, to = e[i].to;
     66         if(cap > 0 && lv[v] < lv[to])
     67         {
     68             int d = dfs(to, t, min(f, cap));
     69             if(d > 0)
     70             {
     71                 cap -= d;
     72                 e[i^1].cap += d;
     73                 return d;
     74             }
     75         }
     76     }
     77     return 0;
     78 }
     79 
     80 int Dinic(int s, int t)
     81 {
     82     int flow = 0;
     83     while(1)
     84     {
     85         bfs(s);
     86         if(lv[t] < 0) return flow;
     87         memcpy(it, h, sizeof(it));
     88         int f;
     89         while((f = dfs(s, t, INF)) > 0) flow += f;
     90     }
     91 }
     92 
     93 int main(void)
     94 {
     95     int T;
     96     scanf("%d", &T);
     97     while(T--)
     98     {
     99         int n, m;
    100         scanf("%d %d", &n, &m);
    101         for(int i = 0; i < m; i++) scanf("%d %d", fm + i, to + i);
    102         int S = n + m + 1, T = S + 1;
    103         int l = 0, r = m, mid;
    104         while(l < r)
    105         {
    106             init();
    107             mid = l + (r - l) / 2;
    108             for(int i = 1; i <= n; i++) ad(S, i, mid);
    109             for(int i = 0; i < m; i++)
    110             {
    111                 ad(fm[i], n + i + 1, 1);
    112                 ad(to[i], n + i + 1, 1);
    113                 ad(n + i + 1, T, 1);
    114             }
    115             if(Dinic(S, T) == m) r = mid;
    116             else l = mid + 1;
    117         }
    118         printf("%d
    ", r);
    119     }
    120     return 0;
    121 }
    Aguin
  • 相关阅读:
    进程上下文VS中断上下文
    字符串分割处理
    C++接收含有空格的字符串
    TLS分析
    位运算之bit_xor、bit_not、bit_and、bit_or
    GET和POST区别
    我的 HTTP/1.1 好慢啊!
    HTTP/2与HTTP/1的比较
    C++11新特性之一— auto 和 decltype 区别和联系
    C++ tuple元组的基本用法(总结)
  • 原文地址:https://www.cnblogs.com/Aguin/p/5227062.html
Copyright © 2011-2022 走看看