zoukankan      html  css  js  c++  java
  • The 2018 ACM-ICPC Chinese Collegiate Programming Contest

    这个拆队比赛的题目质量优秀过头了吧?

    A.Maximum Element In A Stack

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 const int maxn = 5e6 + 10;
     4 typedef long long LL;
     5 
     6 int n, p, q, m;
     7 unsigned int SA, SB, SC;
     8 unsigned int rng61() {
     9     SA ^= SA << 16;
    10     SA ^= SA >> 5;
    11     SA ^= SA << 1;
    12     unsigned int t = SA;
    13     SA = SB;
    14     SB = SC;
    15     SC ^= t ^ SA;
    16     return SC;
    17 }
    18 stack<int> st, ma;
    19 LL gen() {
    20     LL ret = 0;
    21     while(!st.empty()) st.pop(), ma.pop();
    22     st.push(0), ma.push(0);
    23     scanf("%d%d%d%d%u%u%u", &n, &p, &q, &m, &SA, &SB, &SC);
    24     for (int i = 1; i <= n; i++) {
    25         if (rng61() % (p + q) < p) st.push(rng61() % m + 1), ma.push(max(st.top(), ma.top()));
    26         else if(st.size() > 1) st.pop(), ma.pop();
    27         ret ^= (LL) i * ma.top();
    28     }
    29     return ret;
    30 }
    31 int main() {
    32     int T;
    33     scanf("%d", &T);
    34     for(int kase = 1; kase <= T; ++kase) {
    35         printf("Case #%d: %lld
    ", kase, gen());
    36     }
    37     return 0;
    38 }
    Aguin

    B.Rolling The Polygon

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 double x[111], y[111];
     4 
     5 const double pi = acos(-1);
     6 double sqr(double x) {return x * x;}
     7 double dis(int i, int j) {
     8     return sqrt(sqr(x[i] - x[j]) +sqr(y[i] - y[j]));
     9 }
    10 
    11 int main() {
    12     int T;
    13     scanf("%d", &T);
    14     for(int kase = 1; kase <= T; ++kase) {
    15         int n;
    16         scanf("%d", &n);
    17         for(int i = 0; i <= n; ++i) scanf("%lf %lf", x + i, y + i);
    18         double ans = 0;
    19         for(int j = 0; j < n; ++j) {
    20             int i = (j - 1 + n) % n, k = (j + 1) % n;
    21             double d1 = dis(i, j), d2 = dis(j, k), d3 = dis(i, k);
    22             double cos_theta = (sqr(d1) + sqr(d2) -sqr(d3)) / 2 / d1 / d2, theta = acos(cos_theta);
    23             ans += dis(j, n) * (pi - theta);
    24         }
    25         printf("Case #%d: %.3f
    ", kase, ans);
    26     }
    27     return 0;
    28 }
    Aguin

    C.Caesar Cipher

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 char A[55], B[55], C[55];
     4 
     5 int main() {
     6     int T;
     7     scanf("%d", &T);
     8     for(int kase = 1; kase <= T; ++kase) {
     9         int n, m;
    10         scanf("%d %d %s %s %s", &n, &m, A + 1, B + 1, C + 1);
    11         int b = (B[1] - A[1] + 26) % 26;
    12         for(int i = 1; i <= m; ++i) C[i] = (C[i] - 'A' - b + 26) % 26 + 'A';
    13         printf("Case #%d: ", kase);
    14         puts(C + 1);
    15     }
    16     return 0;
    17 }
    Aguin

    D.Take Your Seat

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 
     4 int main() {
     5     int T;
     6     scanf("%d", &T);
     7     for(int kase = 1; kase <= T; ++kase) {
     8         int n, m;
     9         scanf("%d %d", &n, &m);
    10         printf("Case #%d: %.6f %.6f
    ", kase, n == 1 ? 1 : 0.5, (m + 1) / 2.0 / m);
    11     }
    12     return 0;
    13 }
    Aguin

    E.2-3-4 Tree

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 const int maxn = 1e5 + 10;
     4 int a[maxn];
     5 
     6 int cnt, rt;
     7 struct node {
     8     int f;
     9     vector<int> d, ch;
    10     void init(int fa, int x) {
    11         f = fa;
    12         d.clear(), ch.clear();
    13         d.push_back(x);
    14     }
    15 } tr[maxn];
    16 
    17 void ins(int p, int x) {
    18     if(tr[p].d.size() == 3) {
    19         int f = tr[p].f;
    20         vector<int> cpy_d, cpy_ch;
    21         cpy_d.swap(tr[p].d), cpy_ch.swap(tr[p].ch);
    22         if(p == rt) {
    23             tr[rt=++cnt].init(0, cpy_d[1]);
    24             tr[++cnt].init(rt, cpy_d[0]);
    25             tr[p].init(rt, cpy_d[2]);
    26             tr[rt].ch.push_back(cnt), tr[rt].ch.push_back(p);
    27             if(cpy_ch.size()) {
    28                 tr[cnt].ch.push_back(cpy_ch[0]), tr[cpy_ch[0]].f = cnt;
    29                 tr[cnt].ch.push_back(cpy_ch[1]), tr[cpy_ch[1]].f = cnt;
    30                 tr[p].ch.push_back(cpy_ch[2]), tr[cpy_ch[2]].f = p;
    31                 tr[p].ch.push_back(cpy_ch[3]), tr[cpy_ch[3]].f = p;
    32             }
    33             p = rt;
    34         }
    35         else {
    36             tr[p].init(f, cpy_d[0]);
    37             tr[++cnt].init(f, cpy_d[2]);
    38             tr[f].d.push_back(cpy_d[1]);
    39             sort(tr[f].d.begin(), tr[f].d.end());
    40             tr[f].ch.push_back(cnt);
    41             for(int i = tr[f].ch.size() - 1; i > 1; --i) {
    42                 if(tr[f].ch[i-1] != p) swap(tr[f].ch[i-1], tr[f].ch[i]);
    43                 else break;
    44             }
    45             if(cpy_ch.size()) {
    46                 tr[p].ch.push_back(cpy_ch[0]), tr[cpy_ch[0]].f = p;
    47                 tr[p].ch.push_back(cpy_ch[1]), tr[cpy_ch[1]].f = p;
    48                 tr[cnt].ch.push_back(cpy_ch[2]), tr[cpy_ch[2]].f = cnt;
    49                 tr[cnt].ch.push_back(cpy_ch[3]), tr[cpy_ch[3]].f = cnt;
    50             }
    51             p = f;
    52         }
    53     }
    54     if(tr[p].ch.size() == 0) {
    55         tr[p].d.push_back(x);
    56         sort(tr[p].d.begin(), tr[p].d.end());
    57     }
    58     else {
    59         if(x < tr[p].d[0]) ins(tr[p].ch[0], x);
    60         else if(x > tr[p].d[tr[p].d.size()-1]) ins(tr[p].ch[tr[p].ch.size()-1], x);
    61         else {
    62             for(int i = 1; i < tr[p].d.size(); ++i)
    63                 if(x < tr[p].d[i]) {ins(tr[p].ch[i], x); break;}
    64         }
    65     }
    66 }
    67 
    68 void dfs(int p) {
    69     for(int i = 0; i < tr[p].d.size(); ++i)
    70         printf("%d%c", tr[p].d[i], i == tr[p].d.size() - 1 ? '
    ' : ' ');
    71     for(int i = 0; i < tr[p].ch.size(); ++i)
    72         dfs(tr[p].ch[i]);
    73 }
    74 
    75 int main() {
    76     int T;
    77     scanf("%d", &T);
    78     for(int kase = 1; kase <= T; ++kase) {
    79         int n;
    80         scanf("%d", &n);
    81         for(int i = 1; i <= n; ++i) scanf("%d", a + i);
    82         cnt = rt = 1, tr[rt].init(0, a[1]);
    83         for(int i = 2; i <= n; ++i) ins(rt, a[i]);
    84         printf("Case #%d:
    ", kase);
    85         dfs(rt);
    86     }
    87     return 0;
    88 }
    Aguin

    F.Moving On

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 int G[222][222], w[222], nid[222];
     4 int u[22222], v[22222], qw[22222], qid[22222], ans[22222];
     5 bool cmp1(int i, int j) {return w[i] < w[j];}
     6 bool cmp2(int i, int j) {return qw[i] < qw[j];}
     7 void floyd(int x, int n) {
     8     for(int i = 1; i <= n; ++i)
     9         for(int j = 1; j <= n; ++j)
    10             G[i][j] = min(G[i][j], G[i][x] + G[x][j]);
    11 }
    12 int main() {
    13     int T;
    14     scanf("%d", &T);
    15     for(int kase = 1; kase <= T; ++kase) {
    16         int n, q;
    17         scanf("%d %d", &n, &q);
    18         for(int i = 1; i <= n; ++i) scanf("%d", w + i), nid[i] = i;
    19         sort(nid + 1, nid + 1 + n, cmp1);
    20         for(int i = 1; i <= n; ++i)
    21             for(int j = 1; j <= n; ++j)
    22                 scanf("%d", &G[i][j]);
    23         for(int i = 1; i <= q; ++i) scanf("%d %d %d", u + i, v + i, qw + i), qid[i] = i;
    24         sort(qid + 1, qid + 1 + q, cmp2);
    25         int p = 0;
    26         for(int i = 1; i <= q; ++i) {
    27             while(p < n && w[nid[p+1]] <= qw[qid[i]]) floyd(nid[++p], n);
    28             ans[qid[i]] = G[u[qid[i]]][v[qid[i]]];
    29         }
    30         printf("Case #%d:
    ", kase);
    31         for(int i = 1; i <= q; ++i) printf("%d
    ", ans[i]);
    32     }
    33     return 0;
    34 }
    Aguin

    G.Factories

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 const int maxn = 1e5 + 10;
     4 vector<int> G[maxn], D[maxn];
     5 int n, k;
     6 
     7 typedef long long LL;
     8 const LL INF = 1e18;
     9 LL f[maxn][105];
    10 int leaf[maxn];
    11 void dfs(int x, int fa, int w) {
    12     leaf[x] = 0;
    13     for(int i = 1; i <= k; ++i) f[x][i] = INF;
    14     if(G[x].size() == 1) f[x][1] = (LL) w * (k - 1), leaf[x]++;
    15     for(int i = 0; i < G[x].size(); ++i) {
    16         int to = G[x][i], nw = D[x][i];
    17         if(to == fa) continue;
    18         dfs(to, x, nw);
    19         for(int j = min(k, leaf[x] + leaf[to]); j >= 0; --j)
    20             for(int p = max(0, j - leaf[x]); p <= min(leaf[to], j); ++p)
    21                 f[x][j] = min(f[x][j], f[x][j-p] + f[to][p] + (LL) w * (j * (k - j) - (j - p) * (k - j + p)));
    22         leaf[x] += leaf[to];
    23     }
    24 }
    25 
    26 int main() {
    27     int T;
    28     scanf("%d", &T);
    29     for(int kase = 1; kase <= T; ++kase) {
    30         scanf("%d %d", &n, &k);
    31         for(int i = 1; i <= n; ++i) G[i].clear(), D[i].clear();
    32         for(int i = 1; i < n; ++i) {
    33             int u, v, w;
    34             scanf("%d %d %d", &u, &v, &w);
    35             G[u].push_back(v), D[u].push_back(w);
    36             G[v].push_back(u), D[v].push_back(w);
    37         }
    38         if(n == 2) {
    39             printf("Case #%d: %d
    ", kase, k == 2 ? D[1][0] : 0);
    40             continue;
    41         }
    42         int rt = 0;
    43         for(int i = 1; i <= n; ++i)
    44             if(G[i].size() >= 2) rt = i;
    45         dfs(rt, 0, 0);
    46         printf("Case #%d: %lld
    ", kase, f[rt][k]);
    47     }
    48     return 0;
    49 }
    Aguin

    H.Fight Against Monsters

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 typedef long long LL;
     4 const int maxn = 1e5 + 10;
     5 int a[maxn], b[maxn], c[maxn], d[maxn];
     6 bool cmp(int i, int j) {return (LL) c[j] * b[i] > c[i] * b[j];}
     7 int main() {
     8     int T;
     9     scanf("%d", &T);
    10     for(int kase = 1; kase <= T; ++kase) {
    11         int n;
    12         scanf("%d", &n);
    13         for(int i = 1; i <= n; ++i) {
    14             scanf("%d %d", a + i, b + i);
    15             int sum = 0;
    16             for(int j = 1; ; ++j) {
    17                 sum += j;
    18                 if(sum >= a[i]) {c[i] = j; break;}
    19             }
    20             d[i] = i;
    21         }
    22         sort(d + 1, d + 1 + n, cmp);
    23         LL ans = 0, sum = 0;
    24         for(int i = 1; i <= n; ++i) {
    25             int x = d[i];
    26             sum += c[x];
    27             ans += sum * b[x];
    28         }
    29         printf("Case #%d: %lld
    ", kase, ans);
    30     }
    31     return 0;
    32 }
    Aguin

    I.Bubble Sort

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 typedef long long LL;
     4 LL po[55];
     5 
     6 int main() {
     7     int T;
     8     scanf("%d", &T);
     9     for(int kase = 1; kase <= T; ++kase) {
    10         int n, k, q;
    11         scanf("%d %d %d", &n, &k, &q);
    12         if(k >= n - 1) {
    13             LL ans = 1;
    14             for(int i = 1; i <= n; ++i) ans = ans * i % q;
    15             printf("Case #%d: %lld
    ", kase, ans);
    16             continue;
    17         }
    18         po[0] = 1;
    19         for(int i = 1; i <= n; ++i) po[i] = po[i-1] * (k + 1) % q;
    20         LL ans = (po[n-k] + (LL) (n - k - 1) * (n - k) / 2 % q * po[n-k-1]) % q;
    21         for(int i = 1; i <= n - k - 2; ++i) ans = (ans + po[i] * i) % q;
    22         for(int i = 1; i <= k; ++i) ans = ans * i % q;
    23         printf("Case #%d: %lld
    ", kase, ans);
    24     }
    25     return 0;
    26 }
    Aguin

    J.Nested Triangles

      1 #include <bits/stdc++.h>
      2 using namespace std;
      3 typedef long long LL;
      4 const int maxn = 1e5 + 10;
      5 LL x[maxn], y[maxn], xp, yp, xq, yq;
      6 LL cross(LL x1, LL y1, LL x2, LL y2) {
      7     return x1 * y2 - x2 * y1;
      8 }
      9 bool cmp1(int i, int j) {
     10     return cross(x[i] - xp, y[i] - yp, x[j] - xp, y[j] - yp) > 0;
     11 }
     12 bool cmp2(int i, int j) {
     13     return cross(x[i] - xq, y[i] - yq, x[j] - xq, y[j] - yq) < 0;
     14 }
     15 
     16 int a[maxn], b[maxn], c[maxn], f[maxn], pre[maxn];
     17 int lowbit(int s) {
     18     return s & (-s);
     19 }
     20 void modify(int i, int x) {
     21     while (i < maxn) {
     22         if(x != -1 && (c[i] == -1 || f[x] >= f[c[i]])) {
     23             if(c[i] == -1 || f[x] > f[c[i]]) c[i] = x;
     24             else if(x < c[i]) c[i] = x;
     25         }
     26         i += lowbit(i);
     27     }
     28     return;
     29 }
     30 int query(int i) {
     31     int ret = -1;
     32     while (i > 0) {
     33         if(c[i] != -1 && (ret == -1 || f[c[i]] >= f[ret])) {
     34             if(ret == -1 || f[c[i]] > f[ret]) ret = c[i];
     35             else if(c[i] < ret) ret = c[i];
     36         }
     37         i -= lowbit(i);
     38     }
     39     return ret;
     40 }
     41 const int INF = 1e9;
     42 void print(int x) {
     43     while(x != -1) {
     44         printf("%d
    ", x);
     45         x = pre[x];
     46     }
     47 }
     48 vector<int> id[2];
     49 int main() {
     50     int T;
     51     scanf("%d", &T);
     52     for(int kase = 1; kase <= T; ++kase) {
     53         scanf("%lld %lld %lld %lld", &xp, &yp, &xq, &yq);
     54         int n;
     55         scanf("%d", &n);
     56         id[0].clear(), id[1].clear();
     57         for(int i = 1; i <= n; ++i) {
     58             scanf("%lld %lld", x + i, y + i);
     59             if(cross(xq - xp, yq - yp, x[i] - xp, y[i] - yp) > 0) id[0].push_back(i);
     60             else id[1].push_back(i);
     61         }
     62         int M[2];
     63         for(int i = 0; i <= 1; ++i) {
     64             sort(id[i].begin(), id[i].end(), cmp1);
     65             for(int j = 0; j < id[i].size(); ++j) {
     66                 if(j == 0) a[id[i][j]] = 1;
     67                 else if(cmp1(id[i][j-1], id[i][j])) a[id[i][j]] = a[id[i][j-1]] + 1;
     68                 else a[id[i][j]] = a[id[i][j-1]];
     69             }
     70             sort(id[i].begin(), id[i].end(), cmp2);
     71             for(int j = 0; j < id[i].size(); ++j) {
     72                 if(j == 0) b[id[i][j]] = 1;
     73                 else if(cmp2(id[i][j-1], id[i][j])) b[id[i][j]] = b[id[i][j-1]] + 1;
     74                 else b[id[i][j]] = b[id[i][j-1]];
     75             }
     76             M[i] = 0;
     77             for(int j = 0; j <= id[i].size(); ++j) c[j] = -1;
     78             for(int j = 0; j < id[i].size(); ++j) {
     79                 int k = j;
     80                 while(k + 1 < id[i].size() && b[id[i][k+1]] == b[id[i][k]]) k++;
     81                 for(int p = j; p <= k; ++p) {
     82                     int o = id[i][p];
     83                     pre[o] = query(a[o] - 1);
     84                     f[o] = pre[o] == -1 ? 1 : f[pre[o]] + 1;
     85                     M[i] = max(M[i], f[o]);
     86                 }
     87                 for(int p = j; p <= k; ++p) {
     88                     int o = id[i][p];
     89                     modify(a[o], o);
     90                 }
     91                 j = k;
     92             }
     93             swap(xp, xq), swap(yp, yq);
     94         }
     95         printf("Case #%d: %d
    ", kase, max(M[0], M[1]));
     96         for(int i = 1; i <= n; ++i) {
     97             if(f[i] == max(M[0], M[1])) {
     98                 print(i); break;
     99             }
    100         }
    101     }
    102     return 0;
    103 }
    Aguin

    K.Vertex Covers

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 typedef long long LL;
     4 LL a[55], f[1<<20];
     5 vector<int> G[55];
     6 
     7 int main() {
     8     int T;
     9     scanf("%d", &T);
    10     for(int kase = 1; kase <= T; ++kase) {
    11         int n, m, q;
    12         scanf("%d %d %d", &n, &m, &q);
    13         for(int i = 1; i <= n; ++i) scanf("%lld", a + i), G[i].clear();
    14         for(int i = 1; i <= m; ++i) {
    15             int u, v;
    16             scanf("%d %d", &u, &v);
    17             G[u].push_back(v);
    18             G[v].push_back(u);
    19         }
    20         if(n == 1) {printf("Case #%d: %lld
    ", kase, (1 + a[1]) % q); continue;}
    21         int k1 = n / 2, k2 = n - k1;
    22         for(int i = 0; i < (1 << k1); ++i) {
    23             int ok = 1;
    24             LL sum = 1;
    25             for(int j = 1; j <= k1; ++j) {
    26                 if(i & (1 << (j - 1))) sum = sum * a[j] % q;
    27                 for(int k = 0; k < G[j].size(); ++k) {
    28                     int to = G[j][k];
    29                     if(to > k1) continue;
    30                     if(!(i & (1 << (j - 1))) && !(i & (1 << (to - 1)))) {ok = 0; break;}
    31                 }
    32                 if(!ok) break;
    33             }
    34             f[i] = ok ? sum : 0;
    35         }
    36         for(int i = 0; i < k1; ++i)
    37             for(int j = 0; j < (1 << k1); ++j)
    38                 if(j & (1 << i)) f[j^(1<<i)] = (f[j^(1<<i)] + f[j]) % q;
    39         LL ans = 0;
    40         for(int i = 0; i < (1 << k2); ++i) {
    41             int ok = 1, msk = 0;
    42             LL sum = 1;
    43             for(int j = k1 + 1; j <= n; ++j) {
    44                 if(i & (1 << (j - k1 - 1))) sum = sum * a[j] % q;
    45                 for(int k = 0; k < G[j].size(); ++k) {
    46                     int to = G[j][k];
    47                     if(to > k1) {
    48                         if(!(i & (1 << (j - k1 - 1))) && !(i & (1 << (to - k1 - 1)))) {ok = 0; break;}
    49                     }
    50                     else if(!(i & (1 << (j - k1 - 1)))) msk |= 1 << (to - 1);
    51                 }
    52                 if(!ok) break;
    53             }
    54             if(ok) ans = (ans + sum * f[msk]) % q;
    55         }
    56         printf("Case #%d: %lld
    ", kase, ans);
    57     }
    58     return 0;
    59 }
    Aguin

    L.Continuous Intervals

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 const int maxn = 1e5 + 10;
     4 typedef long long LL;
     5 
     6 // seg
     7 int M[maxn<<2], cnt[maxn<<2], tag[maxn<<2];
     8 void gather(int p) {
     9     M[p] = min(M[p << 1], M[p << 1 | 1]);
    10     if (M[p << 1] == M[p << 1 | 1]) cnt[p] = cnt[p << 1] + cnt[p << 1 | 1];
    11     else if (M[p << 1] < M[p << 1 | 1]) cnt[p] = cnt[p << 1];
    12     else cnt[p] = cnt[p << 1 | 1];
    13 }
    14 void push(int p) {
    15     if (tag[p]) {
    16         tag[p << 1] += tag[p];
    17         tag[p << 1 | 1] += tag[p];
    18         M[p << 1] += tag[p];
    19         M[p << 1 | 1] += tag[p];
    20         tag[p] = 0;
    21     }
    22 }
    23 void build(int p, int l, int r)
    24 {
    25     tag[p] = 0, cnt[p] = 1;
    26     if(l < r)
    27     {
    28         int mid = (l + r) >> 1;
    29         build(p<<1, l, mid);
    30         build(p<<1|1, mid + 1, r);
    31         gather(p);
    32     }
    33     else M[p] = 0;
    34 }
    35 void modify(int p, int tl, int tr, int l, int r, int v) {
    36     if (tl > tr) return;
    37     if (tr < l || r < tl) return;
    38     if (l <= tl && tr <= r) {
    39         tag[p] += v;
    40         M[p] += v;
    41         return;
    42     }
    43     push(p);
    44     int mid = (tl + tr) >> 1;
    45     modify(p << 1, tl, mid, l, r, v);
    46     modify(p << 1 | 1, mid + 1, tr, l, r, v);
    47     gather(p);
    48 }
    49 int query(int p, int tl, int tr, int l, int r) {
    50     if (tl > tr) return 0;
    51     if (tr < l || r < tl) return 0;
    52     if (l <= tl && tr <= r) return M[p] == 0 ? cnt[p] : 0;
    53     push(p);
    54     int mid = (tl + tr) >> 1;
    55     return query(p << 1, tl, mid, l, r) + query(p << 1 | 1, mid + 1, tr, l, r);
    56 }
    57 
    58 int a[maxn];
    59 map<int, int> pre;
    60 stack<int> up, down;
    61 int main() {
    62     int T;
    63     scanf("%d", &T);
    64     for(int kase = 1; kase <= T; ++kase) {
    65         int n;
    66         scanf("%d", &n);
    67         build(1, 1, n);
    68         pre.clear();
    69         while(!up.empty()) up.pop();
    70         while(!down.empty()) down.pop();
    71         LL ans = 0;
    72         for(int i = 1; i <= n; ++i) {
    73             scanf("%d", a + i);
    74             while(up.size() && a[up.top()] > a[i]) {
    75                 int t = up.top(); up.pop();
    76                 if(up.size()) modify(1, 1, n, up.top() + 1, t, a[t] - a[i]);
    77                 else modify(1, 1, n, 1, t, a[t] - a[i]);
    78             }
    79             while(down.size() && a[down.top()] < a[i]) {
    80                 int t = down.top(); down.pop();
    81                 if(down.size()) modify(1, 1, n, down.top() + 1, t, a[i] - a[t]);
    82                 else modify(1, 1, n, 1, t, a[i] - a[t]);
    83             }
    84             up.push(i), down.push(i);
    85             if(pre.find(a[i]) != pre.end()) modify(1, 1, n, pre[a[i]] + 1, i - 1, -1);
    86             else modify(1, 1, n, 1, i - 1, -1);
    87             pre[a[i]] = i;
    88             ans += query(1, 1, n, 1, i);
    89         }
    90         printf("Case #%d: %lld
    ", kase, ans);
    91     }
    92     return 0;
    93 }
    Aguin

    M.Acyclic Orientation

      1 #include <bits/stdc++.h>
      2 using namespace std;
      3 typedef long long LL;
      4 
      5 // myyfft
      6 const int max0 = 262144 << 1;
      7 const double PI = acos(-1);
      8 int N, L, bitrev[max0 + 5];
      9 struct cp {
     10     double x, y;
     11     cp() : x(0), y(0) {}
     12     cp(const double &_x, const double &_y) : x(_x), y(_y) {}
     13 } w[max0 + 5];
     14 inline cp operator + (const cp &a, const cp &b) {return cp(a.x + b.x, a.y + b.y);}
     15 inline cp operator - (const cp &a, const cp &b) {return cp(a.x - b.x, a.y - b.y);}
     16 inline cp operator * (const cp &a, const cp &b) {return cp(a.x * b.x - a.y * b.y, a.x * b.y + a.y * b.x);}
     17 inline cp conj(const cp &a) {return cp(a.x, -a.y); }
     18 void fft(cp *a, const int &n) {
     19     for (int i = 0; i < n; ++i) if (i < bitrev[i]) swap(a[i], a[bitrev[i]]);
     20     for (int i = 2, lyc = n >> 1; i <= n; i <<= 1, lyc >>= 1) {
     21         for (int j = 0; j < n; j += i) {
     22             cp *l = a + j, *r = a + j + (i >> 1), *p = w;
     23             for (int k = 0; k < i >> 1; ++k) {
     24                 cp tmp = *r * *p;
     25                 *r = *l - tmp, *l = *l + tmp;
     26                 ++l, ++r, p += lyc;
     27             }
     28         }
     29     }
     30 }
     31 inline void fft_prepare() {
     32     for (int i = 0; i < N; ++i) bitrev[i] = bitrev[i >> 1] >> 1 | ((i & 1) << (L - 1));
     33     for (int i = 0; i < N; ++i) w[i] = cp(cos(2 * PI * i / N), sin(2 * PI * i / N));
     34 }
     35 inline void conv(int *x, int *y, int *z, int mod) {
     36     for (int i = 0; i < N; ++i) (x[i] += mod) %= mod, (y[i] += mod) %= mod;
     37     static cp a[max0 + 5], b[max0 + 5];
     38     static cp dfta[max0 + 5], dftb[max0 + 5], dftc[max0 + 5], dftd[max0 + 5];
     39     for (int i = 0; i < N; ++i) a[i] = cp(x[i] & 32767, x[i] >> 15);
     40     for (int i = 0; i < N; ++i) b[i] = cp(y[i] & 32767, y[i] >> 15);
     41     fft(a, N), fft(b, N);
     42     for (int i = 0; i < N; ++i) {
     43         int j = (N - i) & (N - 1);
     44         static cp da, db, dc, dd;
     45         da = (a[i] + conj(a[j])) * cp(0.5, 0);
     46         db = (a[i] - conj(a[j])) * cp(0, -0.5);
     47         dc = (b[i] + conj(b[j])) * cp(0.5, 0);
     48         dd = (b[i] - conj(b[j])) * cp(0, -0.5);
     49         dfta[j] = da * dc;
     50         dftb[j] = da * dd;
     51         dftc[j] = db * dc;
     52         dftd[j] = db * dd;
     53     }
     54     for (int i = 0; i < N; ++i) a[i] = dfta[i] + dftb[i] * cp(0, 1);
     55     for (int i = 0; i < N; ++i) b[i] = dftc[i] + dftd[i] * cp(0, 1);
     56     fft(a, N), fft(b, N);
     57     for (int i = 0; i < N; ++i) {
     58         int da = (LL) (a[i].x / N + 0.5) % mod;
     59         int db = (LL) (a[i].y / N + 0.5) % mod;
     60         int dc = (LL) (b[i].x / N + 0.5) % mod;
     61         int dd = (LL) (b[i].y / N + 0.5) % mod;
     62         z[i] = (da + ((LL) (db + dc) << 15) + ((LL) dd << 30)) % mod;
     63     }
     64 }
     65 
     66 LL fac[max0], inv_fac[max0];
     67 LL fp(LL a, LL b, LL mod) {
     68     LL ret = 1LL;
     69     while (b) {
     70         if (b & 1) ret = ret * a % mod;
     71         a = a * a % mod;
     72         b >>= 1;
     73     }
     74     return ret;
     75 }
     76 
     77 LL S[max0], f[max0], pre[max0], suf[max0];
     78 int main() {
     79     int T;
     80     scanf("%d", &T);
     81     for(int kase = 1; kase <= T; ++kase) {
     82         int n, m, mod;
     83         scanf("%d %d %d", &n, &m, &mod);
     84         fac[0] = 1;
     85         for(int i = 1; i <= n + m; ++i) fac[i] = fac[i-1] * i % mod;
     86         inv_fac[0] = inv_fac[1] = 1;
     87         for(int i = 2; i <= n + m; i++) inv_fac[i] = (mod - (mod / i) * inv_fac[mod % i] % mod) % mod;
     88         for(int i = 3; i <= n + m; ++i) inv_fac[i] = inv_fac[i] * inv_fac[i-1] % mod;
     89         static int a[max0 + 5], b[max0 + 5], c[max0 + 5];
     90         for(int i = 0; i <= n; ++i) a[i] = (i % 2 ? mod - 1 : 1) * inv_fac[i] % mod;
     91         for(int i = 0; i <= n; ++i) b[i] = fp(i, n, mod) * inv_fac[i] % mod;
     92         L = 0;
     93         for (; (1 << L) < n + n + 1; ++L);
     94         N = 1 << L;
     95         for(int i = n + 1; i < N; ++i) a[i] = b[i] = 0;
     96         fft_prepare();
     97         conv(a, b, c, mod);
     98         for(int i = 0; i <= n; ++i) S[i] = (c[i] + mod) * fac[i] % mod;
     99         for(int i = 0; i <= n; ++i) a[i] = S[i] * inv_fac[i] % mod;
    100         for(int i = 0; i <= n + m; ++i) b[i] = fp(i, m, mod) * inv_fac[i] % mod;
    101         L = 0;
    102         for (; (1 << L) < n + n + m + 1; ++L);
    103         N = 1 << L;
    104         for(int i = n + 1; i < N; ++i) a[i] = 0;
    105         for(int i = n + m + 1; i < N; ++i) b[i] = 0;
    106         fft_prepare();
    107         conv(a, b, c, mod);
    108         for(int i = 0; i <= n + m; ++i) f[i] = (c[i] + mod) * fac[i] % mod;
    109         LL ans = 0;
    110         pre[0] = suf[n + m + 2] = 1;
    111         for(int i = 1; i <= n + m + 1; ++i) pre[i] = pre[i - 1] * (mod - i) % mod;
    112         for(int i = n + m + 1; i >= 1; --i) suf[i] = suf[i + 1] * (mod - i) % mod;
    113         for(int i = 1; i <= n + m + 1; ++i) {
    114             LL x = pre[i - 1] * suf[i + 1] % mod * inv_fac[i-1] % mod * inv_fac[n + m + 1 - i] % mod;
    115             if((n + m + 1 - i) % 2) x = x * (mod - 1) % mod;
    116             ans = (ans + x * f[i - 1]) % mod;
    117         }
    118         if((n + m) % 2) ans = ans * (mod - 1) % mod;
    119         printf("Case #%d: %lld
    ", kase, ans);
    120     }
    121     return 0;
    122 }
    Aguin
  • 相关阅读:
    佛教-著作:《般若泼若密心经》
    学科-几何:分形几何学
    战国-散文:《生于忧患,死于安乐》
    北宋-词:《临江仙·送王缄》
    音乐:《河西走廊之梦》
    影视-纪录片:《河西走廊》
    汉语-汉字:黾
    动物-昆虫:水螳螂
    动物-昆虫:水黾
    主程的晋升攻略(3):IP、DNS和CDN
  • 原文地址:https://www.cnblogs.com/Aguin/p/9341979.html
Copyright © 2011-2022 走看看