zoukankan      html  css  js  c++  java
  • 2019-2020-1 20209329《Linux内核原理与分析》第三周作业

    《Linux内核原理与分析》第三周作业

    1.mykernel实验

    实验楼的虚拟机的环境配置已经搭载好,输入以下命令,可以直观地感受到cpu的中断机制。

    cd ~/LinuxKernel/linux-3.9.4
    rm -rf mykernel
    patch -p1 < ../mykernel_for_linux3.9.4sc.patch
    make allnoconfig      
    make
    qemu -kernel arch/x86/boot/bzImage
    

    运行结果如下:

    在mykernel目录下查看mymain.c和myinterrupt.c源代码,可以发现qemu窗口输出是mymain.c里的printk语句,并周期性的输出myinterrupt.c里的printk语句。
    其中每隔一段时间,发生一次时钟中断,能够触发myinterrupt.c中的代码。
    在此基础上,可以在mymain.c写入进程描述PCB和进程链表管理等代码,在myinterrupt.c写入进程切换代码。这样就完成了一个简单的时间片轮转多道程序内核。

    2.编写一个简单的时间片轮转多道程序内核

    2.1编写mypcb.h头文件

    #define MAX_TASK_NUM        4
    #define KERNEL_STACK_SIZE   1024*8                 //进程控制块
    
    /* CPU-specific state of this task */
    struct Thread {                        //存储ip,sp
        unsigned long        ip;
        unsigned long        sp;
    };
    
    typedef struct PCB{
        int pid;                        //进程的id
        volatile long state;    /* -1 unrunnable, 0 runnable, >0 stopped */
        char stack[KERNEL_STACK_SIZE];            //内核堆栈
        /* CPU-specific state of this task */
        struct Thread thread;
        unsigned long    task_entry;            //指定的入口,平时入口为main函数
        struct PCB *next;                    //进程用链表连接
    }tPCB;
    
    void my_schedule(void);                    //函数,调度器
    

    该头文件包含了对结构体PCB的定义,用来存放进程的各种信息。

    2.2修改mymain.c

    #include <linux/types.h>
    #include <linux/string.h>
    #include <linux/ctype.h>
    #include <linux/tty.h>
    #include <linux/vmalloc.h>
    
    
    #include "mypcb.h"
    
    tPCB task[MAX_TASK_NUM];               //声明tPCB类型的数组
    tPCB * my_current_task = NULL;           //声明当前task的指针
    volatile int my_need_sched = 0;        //是否需要调度
    
    void my_process(void);
    
    
    void __init my_start_kernel(void)
    {
        int pid = 0;
        int i;
        /* Initialize process 0*/
        task[pid].pid = pid;         //初始化0号进程
        task[pid].state = 0;/* -1 unrunnable, 0 runnable, >0 stopped ,状态正在运行*/
        task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process;    //入口
        task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1];//
        task[pid].next = &task[pid];    //指向自己,系统启动只有0号进程
        /*fork more process */
        for(i=1;i<MAX_TASK_NUM;i++)
        {
            memcpy(&task[i],&task[0],sizeof(tPCB));
            task[i].pid = i;
            task[i].state = -1;
            task[i].thread.sp = (unsigned long)&task[i].stack[KERNEL_STACK_SIZE-1];
            task[i].next = task[i-1].next;  //新进程加到进程链表尾部
            task[i-1].next = &task[i];
        }
        /* start process 0 by task[0] */
        pid = 0;
        my_current_task = &task[pid];
        asm volatile(
            "movl %1,%%esp
    	"     /* set task[pid].thread.sp(%1) to esp */
            "pushl %1
    	"             /* push ebp */
            "pushl %0
    	"             /* push task[pid].thread.ip */
            "ret
    	"             /* pop task[pid].thread.ip to eip ,ret之后0号进程正式启动*/
            "popl %%ebp
    	"
            : 
            : "c" (task[pid].thread.ip),"d" (task[pid].thread.sp)    /* input c or d mean %ecx/%edx*/
        );
    }   
    void my_process(void)
    {
        int i = 0;
        while(1)
        {
            i++;
            if(i%10000000 == 0)        //循环1000万次判断是否需要调度
            {
                printk(KERN_NOTICE "this is process %d -
    ",my_current_task->pid);
                if(my_need_sched == 1)
                {
                    my_need_sched = 0;
                    my_schedule();
                }
                printk(KERN_NOTICE "this is process %d +
    ",my_current_task->pid);
            }     
        }
    }
    

    mymain.c文件首先对0号进程进行了描述,然后建立了多个进程,进程间组成一个环形链表。my_process函数是一个死循环,不断的判断my_need_sched是否为1(是否需要调度)
    值得关注的是对0号进程的启动

        /* start process 0 by task[0] */
        pid = 0;
        my_current_task = &task[pid];
        asm volatile(
            "movl %1,%%esp
    	"     /* set task[pid].thread.sp(%1) to esp,将0号进程的堆栈指针赋予esp */
            "pushl %1
    	"             /* push ebp ,把0号进程的堆栈指针压进0号进程的堆栈 */
            "pushl %0
    	"             /* push task[pid].thread.ip ,把0号进程的ip指针(my_process函数的地址)压进0号进程的堆栈 */
            "ret
    	"             /* pop task[pid].thread.ip to eip ,ret之后0号进程正式启, 把堆栈中的ip指针弹出给eip,开始进入my_process函数 */
            "popl %%ebp
    	"
            : 
            : "c" (task[pid].thread.ip),"d" (task[pid].thread.sp)    /* input c or d mean %ecx/%edx*/
        );
    

    2.3修改myinterrupt.c

    #include <linux/types.h>
    #include <linux/string.h>
    #include <linux/ctype.h>
    #include <linux/tty.h>
    #include <linux/vmalloc.h>
    
    #include "mypcb.h"
    
    extern tPCB task[MAX_TASK_NUM];
    extern tPCB * my_current_task;
    extern volatile int my_need_sched;
    volatile int time_count = 0;
    
    /*
     * Called by timer interrupt.
     * it runs in the name of current running process,
     * so it use kernel stack of current running process
     */
    void my_timer_handler(void)
    {
    #if 1
        if(time_count%1000 == 0 && my_need_sched != 1)   //设置时间片的大小,时间片用完时设置调度的标志
        {
            printk(KERN_NOTICE ">>>my_timer_handler here<<<
    ");
            my_need_sched = 1;
        } 
        time_count ++ ;  
    #endif
        return;      
    }
    
    void my_schedule(void)
    {
        tPCB * next;
        tPCB * prev;
    
        if(my_current_task == NULL 
            || my_current_task->next == NULL)
        {
            return;
        }
        printk(KERN_NOTICE ">>>my_schedule<<<
    ");
        /* schedule */
        next = my_current_task->next;
        prev = my_current_task;
        if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */
        {
            my_current_task = next; 
            printk(KERN_NOTICE ">>>switch %d to %d<<<
    ",prev->pid,next->pid);  
            /* switch to next process */
            asm volatile(    
                "pushl %%ebp
    	"     /* save ebp */
                "movl %%esp,%0
    	"     /* save esp */
                "movl %2,%%esp
    	"     /* restore  esp */
                "movl $1f,%1
    	"       /* save eip,%1f指接下来的标号为1的位置 */    
                "pushl %3
    	" 
                "ret
    	"                 /* restore  eip */
                "1:	"                  /* next process start here */
                "popl %%ebp
    	"
                : "=m" (prev->thread.sp),"=m" (prev->thread.ip)
                : "m" (next->thread.sp),"m" (next->thread.ip)
            ); 
         
        }
        else
        {
            next->state = 0;
            my_current_task = next;
            printk(KERN_NOTICE ">>>switch %d to %d<<<
    ",prev->pid,next->pid);
            /* switch to new process */
            asm volatile(    
                "pushl %%ebp
    	"      /* save ebp */
                "movl %%esp,%0
    	"     /* save esp */
                "movl %2,%%esp
    	"     /* restore  esp */
                "movl %2,%%ebp
    	"     /* restore  ebp */
                "movl $1f,%1
    	"       /* save eip */    
                "pushl %3
    	" 
                "ret
    	"                 /* restore  eip */
                : "=m" (prev->thread.sp),"=m" (prev->thread.ip)
                : "m" (next->thread.sp),"m" (next->thread.ip)
            );          
        }   
        return;    
    }
    

    myinterrupt.c中my_timer_hander函数实现了对时间片大小的设置,时间片用完时设置调度的标志(修改my_need_sched)。当执行中断程序myinterrupt.c修改了my_need_sched后,回到mymain.c中的my_process函数,触发调度,转到my_schedule()函数。
    在my_schedule()函数中,实现了进程的调度。

    void my_schedule(void)
    {
        tPCB * next;
        tPCB * prev;
    
        if(my_current_task == NULL 
            || my_current_task->next == NULL)
        {
            return;
        }
        printk(KERN_NOTICE ">>>my_schedule<<<
    ");
        /* schedule */
        next = my_current_task->next;
        prev = my_current_task;
        if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */
        {
            my_current_task = next; 
            printk(KERN_NOTICE ">>>switch %d to %d<<<
    ",prev->pid,next->pid);  
            /* switch to next process */
            asm volatile(    
                "pushl %%ebp
    	"     /* save ebp ,将当前的ebp压进栈*/
                "movl %%esp,%0
    	"     /* save esp,将当前的esp压进当前进程的堆栈 */
                "movl %2,%%esp
    	"     /* restore  esp ,将下一个进程的sp移动到esp*/
                "movl $1f,%1
    	"       /* save eip,%1f指接下来的标号为1的位置 ,将$1f保存到prev->thread.ip*/    
                "pushl %3
    	"          /* 将下一个进程的ip压进下一个进程的堆栈 */
                "ret
    	"                 /* restore  eip ,将堆栈的ip弹出给eip */
                "1:	"                  /* next process start here */
                "popl %%ebp
    	"
                : "=m" (prev->thread.sp),"=m" (prev->thread.ip)
                : "m" (next->thread.sp),"m" (next->thread.ip)
            ); 
         
        }
        else
        {
            next->state = 0;
            my_current_task = next;
            printk(KERN_NOTICE ">>>switch %d to %d<<<
    ",prev->pid,next->pid);
            /* switch to new process */
            asm volatile(    
                "pushl %%ebp
    	"      /* save ebp ,将当前的epb压进栈*/
                "movl %%esp,%0
    	"     /* save esp ,将当前esp压进pre->thread.sp*/
                "movl %2,%%esp
    	"     /* restore  esp ,将next->thread.sp移动到esp*/
                "movl %2,%%ebp
    	"     /* restore  ebp ,将next->thread.sp移动到ebp*/
                "movl $1f,%1
    	"       /* save eip ,将$1f保存到prev->thread.ip*/    
                "pushl %3
    	"          /* 将下一个进程的ip压进下一个进程的堆栈 */
                "ret
    	"                 /* restore  eip ,将堆栈的ip弹出给eip */
                : "=m" (prev->thread.sp),"=m" (prev->thread.ip)
                : "m" (next->thread.sp),"m" (next->thread.ip)
            );          
        }   
        return;    
    }
    

    3.运行结果

    4.学习感受

    通过这次对一个简单的操作系统内核的分析,我对中断服务程序有了更加直观的感受,并对时间片的应用、进程间的调度有了解,不由得感叹操作系统代码实现的巧妙。另外有一些深入的问题还不了解,比如mymain.c和myinterrupt.c是如何交替运行的,中断信号为什么能够触发myinterrupt.c,为什么中断信号发生后只执行my_timer_handler函数。

  • 相关阅读:
    zoj-3433-Gu Jian Qi Tan
    优先队列详解(转载)
    HDU-3661-Assignments
    hdu-1052-Tian Ji -- The Horse Racing(经典)
    POJ-1456-Supermarket
    UVA-11292Dragon of Loowater
    UVA-11729-Commando War
    循环日程表 问题(递归分治)
    八数码问题
    POJ-3273 Monthly Expense (最大值最小化问题)
  • 原文地址:https://www.cnblogs.com/Alannic/p/13873929.html
Copyright © 2011-2022 走看看