zoukankan      html  css  js  c++  java
  • TensorFlow_CNN内tf.nn.conv2d和tf.layers.conv2d参数

     1 tf.nn.conv2d(
     2     input,
     3     filter,
     4     strides,
     5     padding,
     6     use_cudnn_on_gpu=True,
     7     data_format='NHWC',
     8     dilations=[1, 1, 1, 1],
     9     name=None
    10 )

    input:输入数据

    filter:过滤器

    strides:卷积滑动步长,实际上可以解释为过滤器的大小

    padding:图像边填充方式

    --------------------------------------------------------------------------------------------->

    在这里详细地对各个参数做出解释:

    input:就是卷积的输入数据,该输入数据要求是一个Tensor,所以张量的shape为[batch, in_height, in_width, in_channels],batch为训练 [ 一个 ] batch图片数量,这是一个四维向量,所以类型为halfbfloat16float32, float64.

    filter:为一个张量,必须和input是一样的4D shape。[filter_height, filter_width, in_channels, out_channels],参数的第三维就是input内的第四维

    padding:整数型的列表,只有“SAME”和“VALID”两个值,在这里SAME和VALID的计算需要说明一下

    1 #“SAME” 计算方式
    2 out_height = ceil(float(in_height)) / float(strides[1]) 
    3 out_width = ceil(float(in_width)) / float(strides[2]) 
    4 
    5 #“VALID”计算方式
    6 out_height = ceil(float(in_height - filter_height + 1)) / float(strides[1]) 
    7 out_width = ceil(float(in_width - filter_width + 1)) / float(strides[2]) 

    strides:在这里直接参考官方API吧。很详细!  

     1 tf.layers.conv2d(
     2     inputs,
     3     filters,
     4     kernel_size,
     5     strides=(1, 1),
     6     padding='valid',
     7     data_format='channels_last',
     8     dilation_rate=(1, 1),
     9     activation=None,
    10     use_bias=True,
    11     kernel_initializer=None,
    12     bias_initializer=tf.zeros_initializer(),
    13     kernel_regularizer=None,
    14     bias_regularizer=None,
    15     activity_regularizer=None,
    16     kernel_constraint=None,
    17     bias_constraint=None,
    18     trainable=True,
    19     name=None,
    20     reuse=None
    21 )

    根据官方API文档说明,tf.layer.con2d的input和padding与tf.nn.conv2d一样。

    但也有其它差别:

    在这里filter为一个整数,该整数的数量为卷积数量 >>>整数,表示输出空间的维数(即卷积过滤器的数量)。

    kernel_size,可以是一个整数,或list或tuple类型的两个整数。

    strides:一个整数,或者包含了两个整数的元组/队列,表示卷积的纵向和横向的步长。如果是一个整数,则横纵步长相等。另外, strides不等于1 和 dilation_rate 不等于1 这两种情况不能同时存在。

  • 相关阅读:
    百度地图API(二)
    Android开发--页面切换
    Android开发--Socket通信
    android开发--okhttp
    android开发--下载图片
    Android--Handler
    android开发--多线程
    android开发--Application
    android开发--ormlite
    android开发--数据库(更新或者降低版本)
  • 原文地址:https://www.cnblogs.com/AlexHaiY/p/9342384.html
Copyright © 2011-2022 走看看