zoukankan      html  css  js  c++  java
  • Exhaustive Search Aizu

    Write a program which reads a sequence A of n elements and an integer M, and outputs “yes” if you can make M by adding elements in A, otherwise “no”. You can use an element only once.

    You are given the sequence A and q questions where each question contains Mi.

    Input

    In the first line n is given. In the second line, n integers are given. In the third line q is given. Then, in the fourth line, q integers (Mi) are given.

    Output

    For each question Mi, print yes or no.

    Constraints

    n ≤ 20
    q ≤ 200
    1 ≤ elements in A ≤ 2000
    1 ≤ Mi ≤ 2000

    Sample Input 1

    5
    1 5 7 10 21
    8
    2 4 17 8 22 21 100 35

    Sample Output 1

    no
    no
    yes
    yes
    yes
    yes
    no
    no

    Notes

    You can solve this problem by a Burte Force approach. Suppose solve(p, t) is a function which checkes whether you can make t by selecting elements after p-th element (inclusive). Then you can recursively call the following functions:

    solve(0, M)
    solve(1, M-{sum created from elements before 1st element})
    solve(2, M-{sum created from elements before 2nd element})

    The recursive function has two choices: you selected p-th element and not. So, you can check solve(p+1, t-A[p]) and solve(p+1, t) in solve(p, t) to check the all combinations.

    For example, the following figure shows that 8 can be made by A[0] + A[2].

    在这里插入图片描述

    思路

    设solve(i,m)为“用第i个元素后面的元素能得出m时返回true”的函数,这样一来solve(i,m)就可以分解为solve(i+1,m)和solve(i,m-A[i])这两个更小的局部问题。

    函数solve(i,m)中,m==0时代表数组元素相加能够得出指定整数。相反,m>0且i>=n时表示数组元素相加得不出指定整数。

    只要局部问题solve(i+1,m)和solve(i,m-A[i])之中有一个为true,原问题solve(i,m)就为true。

    code

    /*
                                    ^....0
                                   ^ .1 ^1^
                                   ..     01
                                  1.^     1.0
                                 ^ 1  ^    ^0.1
                                 1 ^        ^..^
                                 0.           ^ 0^
                                 .0            1 .^
                                 .1             ^0 .........001^
                                 .1               1. .111100....01^
                                 00             ^   11^        ^1. .1^
                                 1.^                              ^0  0^
                                   .^                                 ^0..1
                                   .1                                   1..^
                                 1 .0                                     ^  ^
                                  00.                                     ^^0.^
                                  ^ 0                                     ^^110.^
                              0   0 ^                                     ^^^10.01
                       ^^     10  1 1                                      ^^^1110.1
                       01     10  1.1                                      ^^^1111110
                       010    01  ^^                                        ^^^1111^1.^           ^^^
                       10  10^ 0^ 1                                            ^^111^^^0.1^       1....^
                        11     0                                               ^^11^^^ 0..  ....1^   ^ ^
                        1.     0^                                               ^11^^^ ^ 1 111^     ^ 0.
                       10   00 11                                               ^^^^^   1 0           1.
                       0^  ^0  ^0                                                ^^^^    0            0.
                       0^  1.0  .^                                               ^^^^    1 1          .0
                       ^.^  ^^  0^                             ^1                ^^^^     0.         ^.1
                       1 ^      11                             1.                ^^^     ^ ^        ..^
                      ^..^      ^1                             ^.^               ^^^       .0       ^.0
                      0..^      ^0                              01               ^^^       ..      0..^
                     1 ..        .1                             ^.^              ^^^       1 ^  ^0001
                    ^  1.        00                              0.             ^^^        ^.0 ^.1
                    . 0^.        ^.^                             ^.^            ^^^         ..0.0
                   1 .^^.         .^                  1001        ^^            ^^^         . 1^
                   . ^ ^.         11                0.    1         ^           ^^          0.
                    0  ^.          0              ^0       1                   ^^^          0.
                  0.^  1.          0^             0       .1                   ^^^          ..
                  .1   1.          00            .        .1                  ^^^           ..
                 1      1.         ^.           0         .^                  ^^            ..
                 0.     1.          .^          .         0                                  .
                 .1     1.          01          .        .                                 ^ 0
                ^.^     00          ^0          1.       ^                                 1 1
                .0      00           .            ^^^^^^                                   .
                .^      00           01                                                    ..
               1.       00           10                                                   1 ^
              ^.1       00           ^.                                            ^^^    .1
              ..        00            .1                                        1..01    ..
             1.1         00           1.                                       ..^      10
            ^ 1^         00           ^.1                                      0 1      1
            .1           00            00                                       ^  1   ^
             .           00            ^.^                                        10^  ^^
           1.1           00             00                                              10^
           ..^           1.             ^.                                               1.
          0 1            ^.              00                 00                            .^
            ^            ^.              ^ 1                00   ^0000^     ^               01
         1 0             ^.               00.0^              ^00000   1.00.1              11
         . 1              0               1^^0.01                      ^^^                01
          .^              ^                1   1^^                                       ^.^
        1 1                                                                              0.
        ..                                                                              1 ^
         1                                                                               1
       ^ ^                                                                             .0
       1                                                                             ^ 1
       ..                                                          1.1            ^0.0
      ^ 0                                                           1..01^^100000..0^
      1 1                                                            ^ 1 ^^1111^ ^^
      0 ^                                                             ^ 1      1000^
      .1                                                               ^.^     .   00
      ..                                                                1.1    0.   0
      1.                                                                  .    1.   .^
      1.                                                                 1    1.   ^0
     ^ .                                                                 ^.1 00    01
     ^.0                                                                  001.     .^
     */
    // Virtual_Judge —— Exhaustive Search Aizu - ALDS1_5_A.cpp created by VB_KoKing on 2019-05-04:12.
    /* Procedural objectives:
    
     Variables required by the program:
    
     Procedural thinking:
    
     Functions required by the program:
    
    */
    /* My dear Max said:
    "I like you,
    So the first bunch of sunshine I saw in the morning is you,
    The first gentle breeze that passed through my ear is you,
    The first star I see is also you.
    The world I see is all your shadow."
    
    FIGHTING FOR OUR FUTURE!!!
    */
    #include <iostream>
    using namespace std;
    
    int n,A[50];
    
    //从输入值M中减去所选元素的递归函数
    int solve(int i,int m)
    {
        if (m==0) return 1;
        if (i>=n) return 0;
        return solve(i+1,m)+solve(i+1,m-A[i]);
    }
    
    int main()
    {
        int q,M;
    
        cin>>n;
        for (int i = 0; i < n; i++)
            cin>>A[i];
        cin>>q;
        for (int i = 0; i < q; i++) {
            cin>>M;
            if (solve(0,M))
                cout<<"yes"<<endl;
            else
                cout<<"no"<<endl;
        }
        return 0;
    }
    
  • 相关阅读:
    HDU 5313 bitset优化背包
    bzoj 2595 斯坦纳树
    COJ 1287 求匹配串在模式串中出现的次数
    HDU 5381 The sum of gcd
    POJ 1739
    HDU 3377 插头dp
    HDU 1693 二进制表示的简单插头dp
    HDU 5353
    URAL 1519 基础插头DP
    UVA 10294 等价类计数
  • 原文地址:https://www.cnblogs.com/AlexKing007/p/12338363.html
Copyright © 2011-2022 走看看