zoukankan      html  css  js  c++  java
  • PaddlePaddle训练营——公开课——AI核心技术掌握——第2章机器能“看”的现代技术——源自视觉神经原理的卷积网络简介及深入理解

    源自视觉神经原理的卷积神经网络简介

    基于人们对于生物视觉的研究,科学家们给出了在计算机视觉中的具备良好表现的卷积神经网络模型。

    卷积神经网络发展概况

    1.在这个结构中可以使用反向传播来训练权重。

    2.Yann LeCun et al在1989年首次展示手写数字识别。

    3.Krizhevsky,Sutskever & Hinton在2012年展示了ImageNet竞赛中图像分类上的有效性。

    4.Girshick,Donahue,Darrell & Malik(arxiv,2013)(CVPR 2014)展示卷积网络对于目标检测同样可行。

    5……

    LeNet 1989

    最早的卷积神经网络的模型
    在这里插入图片描述
    卷积操作:卷积窗口的大小需要指定
    池化操作:
    特征图:
    构成卷积神经网络的基础

    全连接VS局部连接

    全连接

    在这里插入图片描述
    某一层的某一个结点,要和上一层所有的结点都有连接。

    局部连接

    在这里插入图片描述
    卷积是局部化的连接方式,也就是说某一层的某一个结点跟前一层之间的连接不是全部,而是针对一个小窗口。

    网络连接结构

    卷积——>池化——>循环——>累加===》网络连接结构

    卷积网络深入理解

    Convolution

    在这里插入图片描述
    卷积的输入通常是针对一个图像来说的,是一个二维的结构输入单元。
    卷积的时候是将一个局部感知野的内容信息合到一个hidden neuron过程。
    通过这样的方式汇集视觉的信息内容。

    在这里插入图片描述
    神经元对一个指定大小的窗口的内容抽取到第一个隐藏层的第一个单元的位置上。
    可以使用stride length控制移动像素大小。

    共享权重

    使用一个指定大小的窗口去扫动整个图片的时候,对应的链接是同样的权重。

    特征图 Feature map

    在这里插入图片描述

    池化 Pooling

    在这里插入图片描述
    在这里插入图片描述
    max-pooling units:找出最大值输出到下一层。
    L1 pooling:取激活值的平方和的平方根。

  • 相关阅读:
    angular-指令
    microbit 范例课程
    microsoft 为microbit.org 设计的课程
    Microbit 翻译计划及IDE 中文化
    Microbit MicroPython 介绍
    micro:bit 软件生态系统介绍
    Microbit 硬件架构介绍
    TCP协议和UDP协议下的socket
    爬虫-链家二手房
    函数相关
  • 原文地址:https://www.cnblogs.com/AlexKing007/p/12339327.html
Copyright © 2011-2022 走看看