zoukankan      html  css  js  c++  java
  • 深度学习——02、深度学习入门 1518

    15Python环境搭建(推荐Anaconda方法)

    软件万能安装起点
    python官网
    Anaconda官网

    16Eclipse搭建python环境

    软件万能安装起点
    python官网
    Eclipse官网

    17动手完成简单神经网络

    import numpy as np
    
    def sigmoid (x,deriv=False):
        if(deriv==True):
            return x*(1-x)
        return 1/(1+np.exp(-x))
    
    x=np.array([
        [0,0,1],
        [0,1,1],
        [1,0,1],
        [1,1,1],
        [0,0,1]
    ])
    print(x.shape)
    y=np.array([
        [0],
        [1],
        [1],
        [0],
        [0]
    ])
    print(y.shape)
    
    np.random.seed(1)
    
    w0=2*np.random.random((3,4))-1
    w1=2*np.random.random((4,1))-1
    
    for j in range(100000):
        l0=x
    
        l1=sigmoid(np.dot(l0,w0))
        l2=sigmoid(np.dot(l1,w1))
        l2_error=y-l2
        if(j%10000)==0:
            print('Error'+str(np.mean(np.abs(l2_error))))
        l2_delta=l2_error*sigmoid(l2,deriv=True)
        l1_error=l2_delta.dot(w1.T)
        l1_delta=l1_error*sigmoid(l1,deriv=True)
    
        w1 += l1.T.dot(l2_delta)
        w0 += l0.T.dot(l1_delta)
    

    代码分析

    激活函数

    在这里插入图片描述

    def sigmoid (x,deriv=False):
        '''
        激活函数
        :param x:
        :param deriv:标志位,当derive为假时,不计算导数,反之计算,控制传播方向。
        :return:
        '''
        if(deriv==True):
            # 求导
            return x*(1-x)
        return 1/(1+np.exp(-x))
    

    激活函数参见:机器学习——01、机器学习的数学基础1 - 数学分析——Sigmoid/Logistic函数的引入

    定义input和lable值

    x=np.array([
        [0,0,1],
        [0,1,1],
        [1,0,1],
        [1,1,1],
        [0,0,1]
    ])
    y=np.array([
        [0],
        [1],
        [1],
        [0],
        [0]
    ])
    

    可以看一下x和y的维度:

    print(x.shape)
    print(y.shape)
    

    在这里插入图片描述

    指定随机种子

    np.random.seed(1)
    

    保证数据一致,方便对比结果。

    初始化权重值

    #定义w0和w1在-1到1之间
    w0=2*np.random.random((3,4))-1
    #三行对应x的三个特征,四列对应L1层的四个神经元
    w1=2*np.random.random((4,1))-1
    #四行对应L1的四个神经元,一列对应输出0或1
    

    定义三层神经网络

        l0=x
        #L0层为输入层
    
        #进行梯度传播操作:
        l1=sigmoid(np.dot(l0,w0))
        #L0与W0进行矩阵运算得到L1
        l2=sigmoid(np.dot(l1,w1))
        #L1与W1进行矩阵运算得到L2
    

    在这里插入图片描述

    根据误差更新权重

        l2_error=y-l2
        #预测值与真实值之间的差异
        if(j%10000)==0:
            print('Error'+str(np.mean(np.abs(l2_error))))
            #打印误差值
        l2_delta=l2_error*sigmoid(l2,deriv=True)
        #反向传播求导,差异值越大,需要更新的越大
        l1_error=l2_delta.dot(w1.T)
        #w1进行转置之后与l2_delta进行矩阵运算
        l1_delta=l1_error*sigmoid(l1,deriv=True)
    
        #更新w1和w2
        w1 += l1.T.dot(l2_delta)
        w0 += l0.T.dot(l1_delta)
    

    18感受神经网络的强大

    假设有如下数据要将其分类

    在这里插入图片描述

    代码

    import numpy as np
    import matplotlib.pyplot as plt
    
    #ubuntu 16.04 sudo pip instal matplotlib
    
    plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots
    plt.rcParams['image.interpolation'] = 'nearest'
    plt.rcParams['image.cmap'] = 'gray'
    
    np.random.seed(0)
    N = 100 # number of points per class
    D = 2 # dimensionality
    K = 3 # number of classes
    X = np.zeros((N*K,D))
    y = np.zeros(N*K, dtype='uint8')
    for j in range(K):
      ix = range(N*j,N*(j+1))
      r = np.linspace(0.0,1,N) # radius
      t = np.linspace(j*4,(j+1)*4,N) + np.random.randn(N)*0.2 # theta
      X[ix] = np.c_[r*np.sin(t), r*np.cos(t)]
      y[ix] = j
    fig = plt.figure()
    plt.scatter(X[:, 0], X[:, 1], c=y, s=40, cmap=plt.cm.Spectral)
    plt.xlim([-1,1])
    plt.ylim([-1,1])
    plt.show()
        
    

    传统AI算法

    #Train a Linear Classifier
    import numpy as np
    import matplotlib.pyplot as plt
    
    
    np.random.seed(0)
    N = 100 # number of points per class
    D = 2 # dimensionality
    K = 3 # number of classes
    X = np.zeros((N*K,D))
    y = np.zeros(N*K, dtype='uint8')
    for j in range(K):
      ix = range(N*j,N*(j+1))
      r = np.linspace(0.0,1,N) # radius
      t = np.linspace(j*4,(j+1)*4,N) + np.random.randn(N)*0.2 # theta
      X[ix] = np.c_[r*np.sin(t), r*np.cos(t)]
      y[ix] = j
    
    
    
    W = 0.01 * np.random.randn(D,K)
    b = np.zeros((1,K))
    
    # some hyperparameters
    step_size = 1e-0
    reg = 1e-3 # regularization strength
    
    # gradient descent loop
    num_examples = X.shape[0]
    for i in range(1000):
      #print X.shape
      # evaluate class scores, [N x K]
      scores = np.dot(X, W) + b   #x:300*2 scores:300*3
      #print scores.shape 
      # compute the class probabilities
      exp_scores = np.exp(scores)
      probs = exp_scores / np.sum(exp_scores, axis=1, keepdims=True) # [N x K] probs:300*3
      print (probs.shape )
      # compute the loss: average cross-entropy loss and regularization
      corect_logprobs = -np.log(probs[range(num_examples),y]) #corect_logprobs:300*1
      print (corect_logprobs.shape)
      data_loss = np.sum(corect_logprobs)/num_examples
      reg_loss = 0.5*reg*np.sum(W*W)
      loss = data_loss + reg_loss
      if i % 100 == 0:
        print ("iteration %d: loss %f" % (i, loss))
      
      # compute the gradient on scores
      dscores = probs
      dscores[range(num_examples),y] -= 1
      dscores /= num_examples
      
      # backpropate the gradient to the parameters (W,b)
      dW = np.dot(X.T, dscores)
      db = np.sum(dscores, axis=0, keepdims=True)
      
      dW += reg*W # regularization gradient
      
      # perform a parameter update
      W += -step_size * dW
      b += -step_size * db
      scores = np.dot(X, W) + b
    predicted_class = np.argmax(scores, axis=1)
    print ('training accuracy: %.2f' % (np.mean(predicted_class == y)))
    
    h = 0.02
    x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
    y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
                         np.arange(y_min, y_max, h))
    Z = np.dot(np.c_[xx.ravel(), yy.ravel()], W) + b
    Z = np.argmax(Z, axis=1)
    Z = Z.reshape(xx.shape)
    fig = plt.figure()
    plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral, alpha=0.8)
    plt.scatter(X[:, 0], X[:, 1], c=y, s=40, cmap=plt.cm.Spectral)
    plt.xlim(xx.min(), xx.max())
    plt.ylim(yy.min(), yy.max())
    plt.show()
    

    在这里插入图片描述

    神经网络算法

    import numpy as np
    import matplotlib.pyplot as plt
    
    np.random.seed(0)
    N = 100 # number of points per class
    D = 2 # dimensionality
    K = 3 # number of classes
    X = np.zeros((N*K,D))
    y = np.zeros(N*K, dtype='uint8')
    for j in range(K):
      ix = range(N*j,N*(j+1))
      r = np.linspace(0.0,1,N) # radius
      t = np.linspace(j*4,(j+1)*4,N) + np.random.randn(N)*0.2 # theta
      X[ix] = np.c_[r*np.sin(t), r*np.cos(t)]
      y[ix] = j
      
    h = 100 # size of hidden layer
    W = 0.01 * np.random.randn(D,h)# x:300*2  2*100
    b = np.zeros((1,h))
    W2 = 0.01 * np.random.randn(h,K)
    b2 = np.zeros((1,K))
    
    # some hyperparameters
    step_size = 1e-0
    reg = 1e-3 # regularization strength
    
    # gradient descent loop
    num_examples = X.shape[0]
    for i in range(2000):
      
      # evaluate class scores, [N x K]
      hidden_layer = np.maximum(0, np.dot(X, W) + b) # note, ReLU activation hidden_layer:300*100
      #print hidden_layer.shape
      scores = np.dot(hidden_layer, W2) + b2  #scores:300*3
      #print scores.shape
      # compute the class probabilities
      exp_scores = np.exp(scores)
      probs = exp_scores / np.sum(exp_scores, axis=1, keepdims=True) # [N x K]
      #print probs.shape
      
      # compute the loss: average cross-entropy loss and regularization
      corect_logprobs = -np.log(probs[range(num_examples),y])
      data_loss = np.sum(corect_logprobs)/num_examples
      reg_loss = 0.5*reg*np.sum(W*W) + 0.5*reg*np.sum(W2*W2)
      loss = data_loss + reg_loss
      if i % 100 == 0:
        print ("iteration %d: loss %f" % (i, loss))
      
      # compute the gradient on scores
      dscores = probs
      dscores[range(num_examples),y] -= 1
      dscores /= num_examples
      
      # backpropate the gradient to the parameters
      # first backprop into parameters W2 and b2
      dW2 = np.dot(hidden_layer.T, dscores)
      db2 = np.sum(dscores, axis=0, keepdims=True)
      # next backprop into hidden layer
      dhidden = np.dot(dscores, W2.T)
      # backprop the ReLU non-linearity
      dhidden[hidden_layer <= 0] = 0
      # finally into W,b
      dW = np.dot(X.T, dhidden)
      db = np.sum(dhidden, axis=0, keepdims=True)
      
      # add regularization gradient contribution
      dW2 += reg * W2
      dW += reg * W
      
      # perform a parameter update
      W += -step_size * dW
      b += -step_size * db
      W2 += -step_size * dW2
      b2 += -step_size * db2
    hidden_layer = np.maximum(0, np.dot(X, W) + b)
    scores = np.dot(hidden_layer, W2) + b2
    predicted_class = np.argmax(scores, axis=1)
    print ('training accuracy: %.2f' % (np.mean(predicted_class == y)))
    
    
    h = 0.02
    x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
    y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
                         np.arange(y_min, y_max, h))
    Z = np.dot(np.maximum(0, np.dot(np.c_[xx.ravel(), yy.ravel()], W) + b), W2) + b2
    Z = np.argmax(Z, axis=1)
    Z = Z.reshape(xx.shape)
    fig = plt.figure()
    plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral, alpha=0.8)
    plt.scatter(X[:, 0], X[:, 1], c=y, s=40, cmap=plt.cm.Spectral)
    plt.xlim(xx.min(), xx.max())
    plt.ylim(yy.min(), yy.max())
    plt.show()
    
    

    在这里插入图片描述

  • 相关阅读:
    案例分析:设计模式与代码的结构特性——高级软件工程课第六次作业
    用例建模Use Case Modeling——高级软件工程第四次作业
    分析一套源代码的代码规范和风格并讨论如何改进优化代码——高级软件工程课第三次作业
    结合工程实践选题调研分析同类软件产品——高级软件工程课第二次作业
    如何提高程序员的键盘使用效率?——高级软件工程课第一次作业
    ping命令研究报告——网络程序设计课第一次作业
    业务领域建模Domain Modeling——高级软件工程课第五次作业
    Windbg Symbol问题
    堆和栈的区别 (转贴)
    VS2008编译驱动文件设置_不用DDKWizard
  • 原文地址:https://www.cnblogs.com/AlexKing007/p/12339351.html
Copyright © 2011-2022 走看看