zoukankan      html  css  js  c++  java
  • 中文词频统计与词云生成

    作业来源:https://edu.cnblogs.com/campus/gzcc/GZCC-16SE1/homework/2822

    任务:

    1. 下载一长篇中文小说

    2. 从文件读取待分析文本

    1 novel = open(r'E:三体.txt', 'r', encoding='utf8').read()

    3. 安装并使用jieba进行中文分词

    pip install jieba

    import jieba

    jieba.lcut(text)

    4. 更新词库,加入所分析对象的专业词汇

    jieba.load_userdict(word_dict)  #词库文本文件

    jieba.load_userdict(r'E:三体词库.txt')

    参考词库下载地址:https://pinyin.sogou.com/dict/

    转换代码:scel_to_text

    5. 生成词频统计、排序

    1 wordSet = set(tokens)
    2 
    3 wordDict = {}
    4 for w in wordSet:
    5     if len(w) > 1:
    6         wordDict[w] = tokens.count(w)
    7 wordList = list(wordDict.items())
    8 wordList.sort(key=lambda x: x[1], reverse=True)

    6. 排除语法型词汇,代词、冠词、连词等停用词

    stops

    tokens=[token for token in wordsls if token not in stops]

    1 with open(r'E:stops_chinese.txt', 'r', encoding='utf8') as f:
    2     stops = f.read().split('
    ')
    3 tokens = [token for token in cutText if token not in stops]

    7. 输出词频最大TOP25,把结果存放到文件里

    1 for i in range(25):
    2     print(wordList[i])

    8. 生成词云

    install wordcloud:

     

    相关代码:

    1 pd.DataFrame(data=wordList).to_csv('E:\三体词频统计.csv', encoding='utf8')
    2 cut_text = "".join(tokens)
    3 im = imread(r'E:	ree.jpg')
    4 mywc = WordCloud(background_color='white', mask=im, margin=2).generate(cut_text)
    5 plt.imshow(mywc)
    6 plt.axis("off")
    7 plt.show()

    9 完整代码:

     1 import jieba
     2 import pandas as pd
     3 from wordcloud import WordCloud
     4 import matplotlib.pyplot as plt
     5 from scipy.misc import imread
     6 
     7 novel = open(r'E:三体.txt', 'r', encoding='utf8').read()
     8 jieba.load_userdict(r'E:三体词库.txt')
     9 cutText = jieba.lcut(novel)
    10 
    11 with open(r'E:stops_chinese.txt', 'r', encoding='utf8') as f:
    12     stops = f.read().split('
    ')
    13 tokens = [token for token in cutText if token not in stops]
    14 wordSet = set(tokens)
    15 
    16 wordDict = {}
    17 for w in wordSet:
    18     if len(w) > 1:
    19         wordDict[w] = tokens.count(w)
    20 wordList = list(wordDict.items())
    21 wordList.sort(key=lambda x: x[1], reverse=True)
    22 
    23 for i in range(25):
    24     print(wordList[i])
    25 
    26 
    27 pd.DataFrame(data=wordList).to_csv('E:\三体词频统计.csv', encoding='utf8')
    28 cut_text = "".join(tokens)
    29 im = imread(r'E:	ree.jpg')
    30 mywc = WordCloud(background_color='white', mask=im, margin=2).generate(cut_text)
    31 plt.imshow(mywc)
    32 plt.axis("off")
    33 plt.show()

    运行结果:

           

  • 相关阅读:
    闭包的坑
    python中@property和property函数使用
    Python3运算符
    内置函数——eval、exec、compile
    内置函数和匿名函数
    迭代器和生成器
    PHP内置的字符串处理函数
    PHP中的抽象类和接口
    PHP面向对象中常用的关键字和魔术方法
    PHP面向对象的程序设计一些简单的概念
  • 原文地址:https://www.cnblogs.com/Aliuyu/p/10595474.html
Copyright © 2011-2022 走看看