zoukankan      html  css  js  c++  java
  • Numpy之文件存取

    上一篇中我们简要带过了Numpy的数据持久化,在这一篇中将要具体说明Numpy提供的文件存取功能。Numpy可以将数组保存至二进制文件、文本文件,同时支持将多个数组保存至一个文件中。

    1. np.tofile() & np.fromfile()

    import numpy as np
    import os
    
    os.chdir("d:\")
    a = np.arange(0,12)
    a.reshape(3,4)
    array([[ 0,  1,  2,  3],
           [ 4,  5,  6,  7],
           [ 8,  9, 10, 11]])
    
    a.tofile("a.bin")                                    #保存至a.bin
    
    b = np.fromfile("a.bin", dtype=np.int32)  #从文件中加载数组,错误的dtype会导致错误的结果
    array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11])
    
    b.reshape(3,4)
    array([[ 0,  1,  2,  3],
           [ 4,  5,  6,  7],
           [ 8,  9, 10, 11]])
    #读取的数据将为一维数组,需要使用reshape改变其数组结构

    2. np.save() & np.load() & np.savez()

    load()和save()用Numpy专用的二进制格式保存数据,它们会自动处理元素类型和形状等信息。savez()提供了将多个数组存储至一个文件的能力,调用load()方法返回的对象,可以使用数组名对各个数组进行读取。默认数组名arr_0,arr_1,arr_2......

    np.save("a.npy", a.reshape(3,4))
    c = np.load("a.npy")
    c
    array([[ 0,  1,  2,  3],
           [ 4,  5,  6,  7],
           [ 8,  9, 10, 11]])


    多个数组存储至一个文件:

    a = np.array([[1,2,3],[4,5,6]])
    b = np.arange(0,1.0,0.1)
    c = np.sin(b)
    np.savez("result.npz", a, b, sin_arr=c)  #使用sin_arr命名数组c
    r = np.load("result.npz") #加载一次即可
    r["arr_0"]
    array([[1, 2, 3],
           [4, 5, 6]])
    r["arr_1"]
    array([ 0. ,  0.1,  0.2,  0.3,  0.4,  0.5,  0.6,  0.7,  0.8,  0.9])
    r["sin_arr"]
    array([ 0.        ,  0.09983342,  0.19866933,  0.29552021,  0.38941834,
            0.47942554,  0.56464247,  0.64421769,  0.71735609,  0.78332691])

     可以使用解压软件解压缩.npz文件会得到存储的各个数组对应的.npy文件以便进行遍历。

    3. savetxt() & loadtxt()

    a = np.arange(0,12,0.5).reshape(4,-1)
    a
    array([[  0. ,   0.5,   1. ,   1.5,   2. ,   2.5],
           [  3. ,   3.5,   4. ,   4.5,   5. ,   5.5],
           [  6. ,   6.5,   7. ,   7.5,   8. ,   8.5],
           [  9. ,   9.5,  10. ,  10.5,  11. ,  11.5]])
    np.savetxt("a.txt", a)
    np.loadtxt("a.txt")
    array([[  0. ,   0.5,   1. ,   1.5,   2. ,   2.5],
           [  3. ,   3.5,   4. ,   4.5,   5. ,   5.5],
           [  6. ,   6.5,   7. ,   7.5,   8. ,   8.5],
           [  9. ,   9.5,  10. ,  10.5,  11. ,  11.5]])
    np.savetxt("a.txt", a, fmt="%d", delimiter=",") #指定存储数据类型为整型,分隔符为,
    np.loadtxt("a.txt", delimiter=',') #以,分隔符读取
    array([[  0.,   0.,   1.,   1.,   2.,   2.],
           [  3.,   3.,   4.,   4.,   5.,   5.],
           [  6.,   6.,   7.,   7.,   8.,   8.],
           [  9.,   9.,  10.,  10.,  11.,  11.]])
  • 相关阅读:
    下载的谷歌浏览器打不开设置等 报崩溃 新版谷歌crx插件不让拖拽安装问题 cnpm安装问题
    webpack相关面试题
    京东改版提高的性能方面
    对于程序员来说拿到需求之后的那些事(项目管理、需求预估工期等等)
    前端迈向全栈的知识储备路程
    最近的Taro小程序和JD小程序以及原生小程序对比优势
    【转】vmware安装ubuntu详细步骤
    解决主机telnet vmware(ubuntu)不通的问题
    Byte、KB、MB、GB、TB、PB、EB、ZB、YB、DB、NB
    一些协议的链接
  • 原文地址:https://www.cnblogs.com/AllStarGIS/p/3784937.html
Copyright © 2011-2022 走看看