zoukankan      html  css  js  c++  java
  • PCA python 实现

    PCA 实现:

    参考博客:https://blog.csdn.net/u013719780/article/details/78352262

    from __future__ import print_function
    from sklearn import datasets
    import matplotlib.pyplot as plt
    import matplotlib.cm as cmx
    import matplotlib.colors as colors
    import numpy as np
    # matplotlib inline
    
    
    
    def shuffle_data(X, y, seed=None):
        if seed:
            np.random.seed(seed)
    
        idx = np.arange(X.shape[0])
        np.random.shuffle(idx)
    
        return X[idx], y[idx]
    
    
    
    # 正规化数据集 X
    def normalize(X, axis=-1, p=2):
        lp_norm = np.atleast_1d(np.linalg.norm(X, p, axis))
        lp_norm[lp_norm == 0] = 1
        return X / np.expand_dims(lp_norm, axis)
    
    
    # 标准化数据集 X
    def standardize(X):
        X_std = np.zeros(X.shape)
        mean = X.mean(axis=0)
        std = X.std(axis=0)
    
        # 做除法运算时请永远记住分母不能等于0的情形
        # X_std = (X - X.mean(axis=0)) / X.std(axis=0) 
        for col in range(np.shape(X)[1]):
            if std[col]:
                X_std[:, col] = (X_std[:, col] - mean[col]) / std[col]
    
        return X_std
    
    
    # 划分数据集为训练集和测试集
    def train_test_split(X, y, test_size=0.2, shuffle=True, seed=None):
        if shuffle:
            X, y = shuffle_data(X, y, seed)
    
        n_train_samples = int(X.shape[0] * (1-test_size))
        x_train, x_test = X[:n_train_samples], X[n_train_samples:]
        y_train, y_test = y[:n_train_samples], y[n_train_samples:]
    
        return x_train, x_test, y_train, y_test
    
    
    
    # 计算矩阵X的协方差矩阵
    def calculate_covariance_matrix(X, Y=np.empty((0,0))):
        if not Y.any():
            Y = X
        n_samples = np.shape(X)[0]
        covariance_matrix = (1 / (n_samples-1)) * (X - X.mean(axis=0)).T.dot(Y - Y.mean(axis=0))
    
        return np.array(covariance_matrix, dtype=float)
    
    
    # 计算数据集X每列的方差
    def calculate_variance(X):
        n_samples = np.shape(X)[0]
        variance = (1 / n_samples) * np.diag((X - X.mean(axis=0)).T.dot(X - X.mean(axis=0)))
        return variance
    
    
    # 计算数据集X每列的标准差
    def calculate_std_dev(X):
        std_dev = np.sqrt(calculate_variance(X))
        return std_dev
    
    
    # 计算相关系数矩阵
    def calculate_correlation_matrix(X, Y=np.empty([0])):
        # 先计算协方差矩阵
        covariance_matrix = calculate_covariance_matrix(X, Y)
        # 计算X, Y的标准差
        std_dev_X = np.expand_dims(calculate_std_dev(X), 1)
        std_dev_y = np.expand_dims(calculate_std_dev(Y), 1)
        correlation_matrix = np.divide(covariance_matrix, std_dev_X.dot(std_dev_y.T))
    
        return np.array(correlation_matrix, dtype=float)
    
    
    
    class PCA():
        """
        主成份分析算法PCA,非监督学习算法.
        """
        def __init__(self):
            self.eigen_values = None
            self.eigen_vectors = None
            self.k = 2
    
        def transform(self, X):
            """ 
            将原始数据集X通过PCA进行降维
            """
            covariance = calculate_covariance_matrix(X)
    
            # 求解特征值和特征向量
            self.eigen_values, self.eigen_vectors = np.linalg.eig(covariance)
    
            # 将特征值从大到小进行排序,注意特征向量是按列排的,即self.eigen_vectors第k列是self.eigen_values中第k个特征值对应的特征向量
            idx = self.eigen_values.argsort()[::-1]
            eigenvalues = self.eigen_values[idx][:self.k]
            eigenvectors = self.eigen_vectors[:, idx][:, :self.k]
    
            # 将原始数据集X映射到低维空间
            X_transformed = X.dot(eigenvectors)
    
            return X_transformed
    
    
    def main():
        # Load the dataset
        data = datasets.load_iris()
        X = data.data
        y = data.target
    
        # 将数据集X映射到低维空间
        X_trans = PCA().transform(X)
    
        x1 = X_trans[:, 0]
        x2 = X_trans[:, 1]
    
        print(X[0:2])
    
        cmap = plt.get_cmap('viridis')
        colors = [cmap(i) for i in np.linspace(0, 1, len(np.unique(y)))]
    
        class_distr = []
        # Plot the different class distributions
        for i, l in enumerate(np.unique(y)):
            _x1 = x1[y == l]
            _x2 = x2[y == l]
            _y = y[y == l]
            class_distr.append(plt.scatter(_x1, _x2, color=colors[i]))
    
        # Add a legend
        plt.legend(class_distr, y, loc=1)
    
        # Axis labels
        plt.xlabel('Principal Component 1')
        plt.ylabel('Principal Component 2')
        plt.show()
    
    
    if __name__ == "__main__":
        main()
    

      

    kPCA

    1、核主成份分析 Kernel Principle Component Analysis:

    1)现实世界中,并不是所有数据都是线性可分的
    2)通过LDA,PCA将其转化为线性问题并不是好的方法

    3)线性可分 VS 非线性可分

    2、引入核主成份分析:

    可以通过kPCA将非线性数据映射到高维空间,在高维空间下使用标准PCA将其映射到另一个低维空间

    3、原理:
    定义非线性映射函数,该函数可以对原始特征进行非线性组合,以将原始的d维数据集映射到更高维的k维特征空间。

    1)多项式核
    2)双曲正切核
    3)径向基核(RBF),高斯核函数


    基于RBF核的kPCA算法流程:

    Python 代码:

    from scipy.spatial.distance import pdist, squareform
    from scipy import exp
    from numpy.linalg import eigh
    import numpy as np
    
    def rbf_kernel_pca(X, gamma, n_components):
        """
        RBF kernel PCA implementation.
    
        Parameters
        ------------
        X: {NumPy ndarray}, shape = [n_samples, n_features]
    
        gamma: float
          Tuning parameter of the RBF kernel
    
        n_components: int
          Number of principal components to return
    
        Returns
        ------------
         X_pc: {NumPy ndarray}, shape = [n_samples, k_features]
           Projected dataset   
    
        """
        # Calculate pairwise squared Euclidean distances
        # in the MxN dimensional dataset.
        sq_dists = pdist(X, 'sqeuclidean')
    
        # Convert pairwise distances into a square matrix.
        mat_sq_dists = squareform(sq_dists)
    
        # Compute the symmetric kernel matrix.
        K = exp(-gamma * mat_sq_dists)
    
        # Center the kernel matrix.
        N = K.shape[0]
        one_n = np.ones((N, N)) / N
        K = K - one_n.dot(K) - K.dot(one_n) + one_n.dot(K).dot(one_n)
    
        # Obtaining eigenpairs from the centered kernel matrix
        # numpy.linalg.eigh returns them in sorted order
        eigvals, eigvecs = eigh(K)
    
        # Collect the top k eigenvectors (projected samples)
        X_pc = np.column_stack((eigvecs[:, -i]
                                for i in range(1, n_components + 1)))
    
        return X_pc
    
    
    
    
    
    
    import matplotlib.pyplot as plt
    from sklearn.datasets import make_moons
    
    X, y = make_moons(n_samples=100, random_state=123)
    
    plt.scatter(X[y == 0, 0], X[y == 0, 1], color='red', marker='^', alpha=0.5)
    plt.scatter(X[y == 1, 0], X[y == 1, 1], color='blue', marker='o', alpha=0.5)
    
    plt.tight_layout()
    # plt.savefig('./figures/half_moon_1.png', dpi=300)
    plt.show()
    
    
    # 直接用PCA
    from sklearn.decomposition import PCA
    from sklearn.preprocessing import StandardScaler
    
    scikit_pca = PCA(n_components=2)
    X_spca = scikit_pca.fit_transform(X)
    
    fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3))
    
    ax[0].scatter(X_spca[y == 0, 0], X_spca[y == 0, 1],
                  color='red', marker='^', alpha=0.5)
    ax[0].scatter(X_spca[y == 1, 0], X_spca[y == 1, 1],
                  color='blue', marker='o', alpha=0.5)
    
    ax[1].scatter(X_spca[y == 0, 0], np.zeros((50, 1)) + 0.02,
                  color='red', marker='^', alpha=0.5)
    ax[1].scatter(X_spca[y == 1, 0], np.zeros((50, 1)) - 0.02,
                  color='blue', marker='o', alpha=0.5)
    
    ax[0].set_xlabel('PC1')
    ax[0].set_ylabel('PC2')
    ax[1].set_ylim([-1, 1])
    ax[1].set_yticks([])
    ax[1].set_xlabel('PC1')
    
    plt.tight_layout()
    # plt.savefig('./figures/half_moon_2.png', dpi=300)
    plt.show()
    
    
    # KPCA
    
    from matplotlib.ticker import FormatStrFormatter
    
    X_kpca = rbf_kernel_pca(X, gamma=15, n_components=2)
    
    fig, ax = plt.subplots(nrows=1,ncols=2, figsize=(7,3))
    ax[0].scatter(X_kpca[y==0, 0], X_kpca[y==0, 1], 
                color='red', marker='^', alpha=0.5)
    ax[0].scatter(X_kpca[y==1, 0], X_kpca[y==1, 1],
                color='blue', marker='o', alpha=0.5)
    
    ax[1].scatter(X_kpca[y==0, 0], np.zeros((50,1))+0.02, 
                color='red', marker='^', alpha=0.5)
    ax[1].scatter(X_kpca[y==1, 0], np.zeros((50,1))-0.02,
                color='blue', marker='o', alpha=0.5)
    
    ax[0].set_xlabel('PC1')
    ax[0].set_ylabel('PC2')
    ax[1].set_ylim([-1, 1])
    ax[1].set_yticks([])
    ax[1].set_xlabel('PC1')
    ax[0].xaxis.set_major_formatter(FormatStrFormatter('%0.1f'))
    ax[1].xaxis.set_major_formatter(FormatStrFormatter('%0.1f'))
    
    plt.tight_layout()
    # plt.savefig('./figures/half_moon_3.png', dpi=300)
    plt.show()
    
    
    
    #sklearn kpca
    
    from sklearn.decomposition import KernelPCA
    
    X, y = make_moons(n_samples=100, random_state=123)
    scikit_kpca = KernelPCA(n_components=2, kernel='rbf', gamma=15)
    X_skernpca = scikit_kpca.fit_transform(X)
    
    plt.scatter(X_skernpca[y == 0, 0], X_skernpca[y == 0, 1],
                color='red', marker='^', alpha=0.5)
    plt.scatter(X_skernpca[y == 1, 0], X_skernpca[y == 1, 1],
                color='blue', marker='o', alpha=0.5)
    
    plt.xlabel('PC1')
    plt.ylabel('PC2')
    plt.tight_layout()
    # plt.savefig('./figures/scikit_kpca.png', dpi=300)
    plt.show()
    

      

    参考: https://blog.csdn.net/weixin_40604987/article/details/79632888

  • 相关阅读:
    typescript接口初识
    TypeScript如何创建一个工程
    typescript开发入门
    node.js下面创建一个express应用的几条命令【乱序版】
    一天入门typescript
    Node.js快速创建一个Express应用的几个步骤
    数据结构--栈
    数据结构--单链表
    数据结构--二叉树
    数据结构--树
  • 原文地址:https://www.cnblogs.com/Allen-rg/p/11414972.html
Copyright © 2011-2022 走看看