过去的首页推荐更多的是在相关性推荐的单一数据目标上进行优化,如今天猫首页的推荐系统不仅仅考虑推荐结果的相关性,还在推荐结果的发现性、多样性等方面上做了更深度的优化,"效率和体验并重"成为天猫首页新的优化目标。Graph Embedding、Transformer、深度学习、知识图谱等新的技术已先后在天猫首页的推荐系统成功落地,为场景带来了两位数的点击率提升和两位数的疲劳度下降。
推荐框架
天猫首页的个性化推荐系统可以分为召回、排序和机制三个模块。其中,召回模块主要是从全量的商品素材中检索出用户感兴趣的 TopK 个候选商品,排序模块专注于用户对商品的 CTR 预估,机制模块负责后期的流量调控、体验优化、策略调控等和最终的商品排序。整个推荐系统采用 Graph Embedding、Transformer、深度学习、知识图谱、用户体验建模等新的技术构建起来,如下图为天猫首页推荐系统的技术框架图。
原文详见:
https://yq.aliyun.com/articles/704401?utm_content=g_1000060605