zoukankan      html  css  js  c++  java
  • Codeforces 1C(外接圆与正多边形)

    要点

    • 各点肯定都在外接圆上,边越多越接近圆面积,所以要最小面积应当取可能的最少边数。
    • 给三角形求外接圆半径公式:(R=frac{abc}{4S})
    • 三个角度对应的圆心角取gcd即是要求的正多边形的一个角度,然后求面积即可。注意三个圆心角的求法是三个内角乘2.
    #include <cstdio>
    #include <cmath>
    #include <algorithm>
    using namespace std;
    
    typedef double db;
    const db PI = acos(-1.0);
    const db eps = 1e-2;
    
    db x[3], y[3], len[3];
    
    db sqr(db x) {
    	return x * x;
    }
    
    db S(db a, db b, db c) {
    	db p = (a + b + c) / 2;
    	db res = p * (p - a) * (p - b) * (p - c);
    	return sqrt(res);
    }
    
    db calc(db c, db a, db b) {
    	db res = (sqr(a) + sqr(b) - sqr(c)) / 2 / a / b;
    	return acos(res + 1e-8);
    }
    
    db gcd(db a, db b) {
    	if (fabs(b) < eps) return a;
    	return gcd(b, fmod(a, b));
    }
    
    int main() {
    	for (int i = 0; i < 3; i++)
    		scanf("%lf%lf", &x[i], &y[i]);
    
    	db mul = 1.0;
    	for (int i = 0; i < 3; i++) {
    		int j = (i + 1) % 3;
    		len[i] = sqrt(sqr(x[i] - x[j]) + sqr(y[i] - y[j]));
    		mul *= len[i];
    	}
    
    	db R = mul / 4 / S(len[0], len[1], len[2]);
     	db delta = -1, select;
    	for (int i = 0; i < 3; i++) {
    		db tmp = calc(len[i], len[(i + 1) % 3], len[(i + 2) % 3]);
    		tmp *= 2;
    		if (delta < 0)	delta = tmp;
    		else	delta = gcd(tmp, delta);
    	}
     	db ans = sqr(R) * sin(delta) * PI / delta;
    	return !printf("%.20lf
    ", ans);
    }
    
  • 相关阅读:
    Java实现 LeetCode 657 机器人能否返回原点(暴力大法)
    PHP imagearc
    PHP imageantialias
    PHP imagealphablending
    PHP imageaffinematrixget
    PHP imageaffinematrixconcat
    空单元 | empty-cells (Miscellaneous Level 2)
    矩阵 | matrix() (Transforms)
    相邻兄弟选择器 | Adjacent sibling selectors (Selectors)
    相抵路径 | offset-path (Motion Path)
  • 原文地址:https://www.cnblogs.com/AlphaWA/p/10925300.html
Copyright © 2011-2022 走看看