zoukankan      html  css  js  c++  java
  • 网络流——最小费用最大流模板

    #连续最短路算法#

    菜鸡自用的板子。

      1 #include<algorithm>
      2 #include<iostream>
      3 #include<cstring>
      4 #include<cstdio>
      5 #include<vector>
      6 #include<queue>
      7 #include<cmath>
      8 using namespace std;
      9 typedef pair<int, int> _pair;
     10 const int maxv= 510;
     11 const int maxe= 21000;
     12 const int inf= 0x3f3f3f3f;
     13 
     14 struct ENode
     15 {
     16     int to;
     17     int cap;
     18     int cost;
     19     int Next;
     20 };
     21 
     22 struct Min_Cost_Max_Flow
     23 {
     24     ENode edegs[maxe];
     25     int Head[maxv], tnt;
     26     int dist[maxv], preV[maxv], preE[maxv];
     27     void init()
     28     {
     29         memset(Head, -1, sizeof(Head));
     30         tnt= -1;
     31     }
     32     void Add_ENode (int _from, int _to, int _cap, int _cost)
     33     {
     34         ++ tnt;
     35         edegs[tnt].to= _to;
     36         edegs[tnt].cap= _cap;
     37         edegs[tnt].cost= _cost;
     38         edegs[tnt].Next= Head[_from];
     39         Head[_from]= tnt;
     40         ++ tnt;
     41         edegs[tnt].to= _from;
     42         edegs[tnt].cap= 0;
     43         edegs[tnt].cost= -_cost;
     44         edegs[tnt].Next= Head[_to];
     45         Head[_to]= tnt;
     46     }
     47 
     48     int Min_cost_max_flow (int s, int t, int maxf, int &flow)
     49     {
     50         int ret= 0;
     51         priority_queue<_pair, vector<_pair>, greater<_pair> > q;
     52 
     53         while (maxf)
     54         {
     55             memset(dist, inf, sizeof(dist));
     56             while (! q.empty()) q.pop();
     57             dist[s]= 0;
     58             q.push(_pair(0, s));
     59 
     60             while (! q.empty())
     61             {
     62                 _pair now= q.top();
     63                 q.pop();
     64                 int u= now.second;
     65                 if (dist[u]< now.first) continue;
     66                 for (int k= Head[u]; k!= -1; k= edegs[k].Next)
     67                 {
     68                     int v= edegs[k].to;
     69                     if (edegs[k].cap> 0&& dist[v]> dist[u]+ edegs[k].cost)
     70                     {
     71                         dist[v]= dist[u]+ edegs[k].cost;
     72                         preV[v]= u;
     73                         preE[v]= k;
     74                         q.push(_pair(dist[v], v));
     75                     }
     76                 }
     77             }
     78 
     79             if (dist[t]== inf) break;
     80             int f= maxf;
     81             for (int i= t; i!= s; i= preV[i])
     82             {
     83                 f= min(f, edegs[preE[i]].cap);
     84             }
     85             for (int i= t; i!= s; i= preV[i])
     86             {
     87                 edegs[preE[i]].cap-= f;
     88                 edegs[preE[i]^ 1].cap+= f;
     89             }
     90             maxf-= f;
     91             flow+= f;
     92             ret+= f* dist[t];
     93         }
     94         return ret;
     95     }
     96 };
     97 
     98 Min_Cost_Max_Flow MCMF;
     99 int num[maxv];
    100 int main()
    101 {
    102     MCMF.init();
    103     int s= 0, t= n+ 1;
    104     /*建图*/
    105     int flow= 0;
    106     int ans= MCMF.Min_cost_max_flow(s, t, inf, flow);
    107     printf("%d
    ", ans);
    108     return 0;
    109 }
    View Code

    #zkw费用流#

    参考网址: https://artofproblemsolving.com/community/c1368h1020435

    zkw大佬的改进:①在dfs的时候可以实现多路增广②KM算法节省SPFA时间(然而我这里没有KM,要问为什么,当然是因为我不会了orz);

    but,参考了另外的博客,修修补补又三年~

      1 #include <algorithm>
      2 #include <iostream>
      3 #include <cstring>
      4 #include <cstdio>
      5 #include <queue>
      6 #include <cmath>
      7 using namespace std;
      8 const int maxv= 200010;
      9 const int maxe= 2000010;
     10 const int INF= 0x3f3f3f3f;
     11 
     12 struct ENode
     13 {
     14     int to;
     15     int c;
     16     int f;
     17     int Next;
     18 };
     19 ENode edegs[maxe];
     20 int Head[maxv], tnt;
     21 void init()
     22 {
     23     memset(Head, -1, sizeof(Head));
     24     tnt= -1;
     25 }
     26 void Add_ENode(int a, int b, int _c, int _f)
     27 {
     28     ++ tnt;
     29     edegs[tnt].to= b;
     30     edegs[tnt].c= _c;
     31     edegs[tnt].f= _f;
     32     edegs[tnt].Next= Head[a];
     33     Head[a]= tnt;
     34     ++ tnt;
     35     edegs[tnt].to= a;
     36     edegs[tnt].c= 0;
     37     edegs[tnt].f= -_f;
     38     edegs[tnt].Next= Head[b];
     39     Head[b]= tnt;
     40 }
     41 
     42 bool vis[maxv];  //访问标记
     43 int dist[maxv];  //每个点的距离标号,其实就是dis[];
     44 inline bool spfa(int s, int t)
     45 {
     46     memset(vis, 0, sizeof(vis));
     47     memset(dist, INF, sizeof(dist));
     48     dist[t]= 0;
     49     vis[t]= 1;//首先SPFA我们维护距离标号的时候要倒着跑,这样可以维护出到终点的最短路径
     50     deque<int> q;
     51     q.push_back(t);//使用了SPFA的SLF优化(SLF可以自行百度或Google)
     52 
     53     while(!q.empty())
     54     {
     55         int u= q.front();
     56         q.pop_front();
     57         for(int k= Head[u]; k!= -1; k=edegs[k].Next)
     58         {
     59             int v= edegs[k].to;
     60             if(edegs[k^1].c&& dist[v]> dist[u]- edegs[k].f)
     61             {
     62                 /*首先c[k^1]是为什么呢,因为我们要保证正流,但是SPFA是倒着跑的,
     63                 所以说我们要求c[k]的对应反向边是正的,这样保证走的方向是正确的*/
     64                 dist[v]= dist[u]- edegs[k].f;
     65                 /*因为已经是倒着的了,我们也可以很清楚明白地知道建边的时候反向边的边权是负的,
     66                 所以减一下就对了(负负得正)*/
     67                 if(!vis[v])
     68                 {
     69                     vis[v]= 1;
     70                     /*SLF优化*/
     71                     if(! q.empty()&& dist[v]< dist[q.front()])q.push_front(v);
     72                     else q.push_back(v);
     73                 }
     74             }
     75         }
     76         vis[u]=0;
     77     }
     78     return dist[s]< INF;//判断起点终点是否连通
     79 }
     80 
     81 int ans; //ans:费用答案
     82 inline int dfs_flow(int now, int c_max, int t)
     83 {
     84     /*这里就是进行増广了,一次dfs进行了多次增广*/
     85     if(now== t)
     86     {
     87         vis[t]=1;
     88         return c_max;
     89     }
     90     int ret= 0, a;
     91     vis[now]=1;
     92 
     93     for(int k=Head[now]; k!= -1; k= edegs[k].Next)
     94     {
     95         int v= edegs[k].to;
     96         if(! vis[v]&& edegs[k].c&& dist[v]== dist[now]- edegs[k].f)
     97         {
     98             /*这个条件就表示这条边可以进行増广*/
     99             a= dfs_flow(v, min(edegs[k].c, c_max- ret), t);
    100             if(a)
    101             {
    102                 /*累加答案,加流等操作都在这了*/
    103                 ans+= a* edegs[k].f; /*流过时按流量单位计费*/
    104                 //ans+= edegs[k].f; /*流过时费用固定*/
    105                 /**注意上面两句指令的区别*/
    106                 edegs[k].c-= a;
    107                 edegs[k^1].c+= a;
    108                 ret+= a;
    109             }
    110             if(ret== c_max)break;
    111         }
    112     }
    113     return ret;
    114 }
    115 
    116 inline int Min_Cost_Flow(int s, int t)
    117 {
    118     int flow= 0;
    119     ans= 0;  //费用清零
    120     while(spfa(s, t))
    121     {
    122         /*判断起点终点是否连通,不连通说明满流,做完了退出*/
    123         vis[t]= 1;
    124         while(vis[t])
    125         {
    126             memset(vis, 0, sizeof vis);
    127             flow+= dfs_flow(s, INF, t);//一直増广直到走不到为止(这样也可以省时间哦)
    128         }
    129     }
    130     return flow;//这里返回的是最大流,费用的答案在ans里
    131 }
    132 int main()
    133 {
    134     int n, m, s, t;
    135     scanf("%d %d %d %d", &n, &m, &s, &t);
    136     init();
    137     for(int i= 0; i< m; i ++)
    138     {
    139         int a, b, c, f;
    140         scanf("%d%d%d%d", &a, &b, &c, &f);
    141         Add_ENode(a, b, c, f);
    142     }
    143     printf("%d ", Min_Cost_Flow(s, t));
    144     printf("%d
    ", ans);
    145     return 0;
    146 }
    View Code

     #DAG图上费用流#

    大佬标称模板:

    《DAG图上的最小(最大)费用最大流,适用负权边》

      1 //author Forsaken
      2 #define Hello the_cruel_world!
      3 #pragma GCC optimize(2)
      4 #include<iostream>
      5 #include<algorithm>
      6 #include<cstdio>
      7 #include<string>
      8 #include<cstring>
      9 #include<vector>
     10 #include<map>
     11 #include<set>
     12 #include<queue>
     13 #include<stack>
     14 #include<utility>
     15 #include<cmath>
     16 #include<climits>
     17 #include<deque>
     18 #include<functional>
     19 #include<numeric>
     20 #define max(x,y) ((x) > (y) ? (x) : (y))
     21 #define min(x,y) ((x) < (y) ? (x) : (y))
     22 #define lowbit(x) ((x) & (-(x)))
     23 #define FRIN freopen("C:\Users\Administrator.MACHENI-KA32LTP\Desktop\1.in", "r", stdin)
     24 #define FROUT freopen("C:\Users\Administrator.MACHENI-KA32LTP\Desktop\1.out", "w", stdout)
     25 #define FAST ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);
     26 #define outd(x) printf("%d
    ", x)
     27 #define outld(x) printf("%lld
    ", x)
     28 #define memset0(arr) memset(arr, 0, sizeof(arr))
     29 #define il inline
     30 using namespace std;
     31 typedef long long ll;
     32 typedef unsigned long long ull;
     33 typedef pair<int, int> pii;
     34 const int maxn = 1e4;
     35 const int INF = 0x7fffffff;
     36 const int mod = 1e9 + 7;
     37 const double eps = 1e-7;
     38 const double Pi = acos(-1.0);
     39 il int read_int()
     40 {
     41     char c;
     42     int ret = 0, sgn = 1;
     43     do
     44     {
     45         c = getchar();
     46     }
     47     while ((c < '0' || c > '9') && c != '-');
     48     if (c == '-') sgn = -1;
     49     else ret = c - '0';
     50     while ((c = getchar()) >= '0' && c <= '9') ret = ret * 10 + (c - '0');
     51     return sgn * ret;
     52 }
     53 il ll read_ll()
     54 {
     55     char c;
     56     ll ret = 0, sgn = 1;
     57     do
     58     {
     59         c = getchar();
     60     }
     61     while ((c < '0' || c > '9') && c != '-');
     62     if (c == '-') sgn = -1;
     63     else ret = c - '0';
     64     while ((c = getchar()) >= '0' && c <= '9') ret = ret * 10 + (c - '0');
     65     return sgn * ret;
     66 }
     67 il ll quick_pow(ll base, ll index)
     68 {
     69     ll res = 1;
     70     while (index)
     71     {
     72         if (index & 1)res = res * base % mod;
     73         base = base * base % mod;
     74         index >>= 1;
     75     }
     76     return res;
     77 }
     78 struct edge
     79 {
     80     int to, capacity, cost, rev;
     81     edge() {}
     82     edge(int to, int _capacity, int _cost, int _rev) :to(to), capacity(_capacity), cost(_cost), rev(_rev) {}
     83 };
     84 struct Min_Cost_Max_Flow
     85 {
     86     int V, H[maxn + 5], dis[maxn + 5], PreV[maxn + 5], PreE[maxn + 5];
     87     vector<edge> G[maxn + 5];
     88     //调用前初始化
     89     void Init(int n)
     90     {
     91         V = n;
     92         for (int i = 0; i <= V; ++i)G[i].clear();
     93     }
     94     //加边
     95     void Add_Edge(int from, int to, int cap, int cost)
     96     {
     97         G[from].push_back(edge(to, cap, cost, G[to].size()));
     98         G[to].push_back(edge(from, 0, -cost, G[from].size() - 1));
     99     }
    100     //flow是自己传进去的变量,就是最后的最大流,返回的是最小费用
    101     int Min_cost_max_flow(int s, int t, int f, int& flow)
    102     {
    103         int res = 0;
    104         fill(H, H + 1 + V, 0);
    105         while (f)
    106         {
    107             priority_queue <pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>> > q;
    108             fill(dis, dis + 1 + V, INF);
    109             dis[s] = 0;
    110             q.push(pair<int, int>(0, s));
    111             while (!q.empty())
    112             {
    113                 pair<int, int> now = q.top();
    114                 q.pop();
    115                 int v = now.second;
    116                 if (dis[v] < now.first)continue;
    117                 for (int i = 0; i < G[v].size(); ++i)
    118                 {
    119                     edge& e = G[v][i];
    120                     if (e.capacity > 0 && dis[e.to] > dis[v] + e.cost + H[v] - H[e.to])
    121                     {
    122                         dis[e.to] = dis[v] + e.cost + H[v] - H[e.to];
    123                         PreV[e.to] = v;
    124                         PreE[e.to] = i;
    125                         q.push(pair<int, int>(dis[e.to], e.to));
    126                     }
    127                 }
    128             }
    129             if (dis[t] == INF)break;
    130             for (int i = 0; i <= V; ++i)H[i] += dis[i];
    131             int d = f;
    132             for (int v = t; v != s; v = PreV[v])d = min(d, G[PreV[v]][PreE[v]].capacity);
    133             f -= d;
    134             flow += d;
    135             res += d*H[t];
    136             for (int v = t; v != s; v = PreV[v])
    137             {
    138                 edge& e = G[PreV[v]][PreE[v]];
    139                 e.capacity -= d;
    140                 G[v][e.rev].capacity += d;
    141             }
    142         }
    143         return res;
    144     }
    145     int Max_cost_max_flow(int s, int t, int f, int& flow)
    146     {
    147         int res = 0;
    148         fill(H, H + 1 + V, 0);
    149         while (f)
    150         {
    151             priority_queue <pair<int, int>> q;
    152             fill(dis, dis + 1 + V, -INF);
    153             dis[s] = 0;
    154             q.push(pair<int, int>(0, s));
    155             while (!q.empty())
    156             {
    157                 pair<int, int> now = q.top();
    158                 q.pop();
    159                 int v = now.second;
    160                 if (dis[v] > now.first)continue;
    161                 for (int i = 0; i < G[v].size(); ++i)
    162                 {
    163                     edge& e = G[v][i];
    164                     if (e.capacity > 0 && dis[e.to] < dis[v] + e.cost + H[v] - H[e.to])
    165                     {
    166                         dis[e.to] = dis[v] + e.cost + H[v] - H[e.to];
    167                         PreV[e.to] = v;
    168                         PreE[e.to] = i;
    169                         q.push(pair<int, int>(dis[e.to], e.to));
    170                     }
    171                 }
    172             }
    173             if (dis[t] == -INF)break;
    174             for (int i = 0; i <= V; ++i)H[i] += dis[i];
    175             int d = f;
    176             for (int v = t; v != s; v = PreV[v])d = min(d, G[PreV[v]][PreE[v]].capacity);
    177             f -= d;
    178             flow += d;
    179             res += d*H[t];
    180             for (int v = t; v != s; v = PreV[v])
    181             {
    182                 edge& e = G[PreV[v]][PreE[v]];
    183                 e.capacity -= d;
    184                 G[v][e.rev].capacity += d;
    185             }
    186         }
    187         return res;
    188     }
    189 };
    190 int n, k, s1, s2, t, flow, arr[maxn + 5];
    191 Min_Cost_Max_Flow MCMF;
    192 int main()
    193 {
    194     for (int kase = read_int(); kase > 0; --kase)
    195     {
    196         n = read_int(), k = read_int();
    197         s1 = 0, s2 = 2 * n + 1, t = 2 * n + 2;
    198         MCMF.Init(t);
    199         MCMF.Add_Edge(s1, s2, k, 0);
    200         for (int i = 1; i <= n; ++i)
    201         {
    202             arr[i] = read_int();
    203             MCMF.Add_Edge(i, i + n, 1, arr[i]);
    204         }
    205         for (int i = 1; i <= n; ++i)
    206             for (int j = i + 1; j <= n; ++j)
    207             {
    208                 if (arr[i] <= arr[j])MCMF.Add_Edge(i + n, j, 1, 0);
    209             }
    210         for (int i = 1; i <= n; ++i)
    211         {
    212             MCMF.Add_Edge(s2, i, 1, 0);
    213             MCMF.Add_Edge(i + n, t, 1, 0);
    214         }
    215         cout << MCMF.Max_cost_max_flow(s1, t, INF, flow) << endl;
    216     }
    217     return 0;
    218 }
    View Code

    end;

  • 相关阅读:
    第十三周进度条
    寻找水军
    第十二周进度条
    学习总结
    第十五周工作总结
    第十四周工作总结
    《梦断代码》阅读笔记03
    个人工作总结20
    个人工作总结19
    个人工作总结18
  • 原文地址:https://www.cnblogs.com/Amaris-diana/p/11328332.html
Copyright © 2011-2022 走看看