Description
RSA is one of the most powerful methods to encrypt data. The RSA algorithm is described as follow:
> choose two large prime integer p, q
> calculate n = p × q, calculate F(n) = (p - 1) × (q - 1)
> choose an integer e(1 < e < F(n)), making gcd(e, F(n)) = 1, e will be the public key
> calculate d, making d × e mod F(n) = 1 mod F(n), and d will be the private key
You can encrypt data with this method :
C = E(m) = m e mod n
When you want to decrypt data, use this method :
M = D(c) = c d mod n
Here, c is an integer ASCII value of a letter of cryptograph and m is an integer ASCII value of a letter of plain text.
Now given p, q, e and some cryptograph, your task is to "translate" the cryptograph into plain text.
> choose two large prime integer p, q
> calculate n = p × q, calculate F(n) = (p - 1) × (q - 1)
> choose an integer e(1 < e < F(n)), making gcd(e, F(n)) = 1, e will be the public key
> calculate d, making d × e mod F(n) = 1 mod F(n), and d will be the private key
You can encrypt data with this method :
C = E(m) = m e mod n
When you want to decrypt data, use this method :
M = D(c) = c d mod n
Here, c is an integer ASCII value of a letter of cryptograph and m is an integer ASCII value of a letter of plain text.
Now given p, q, e and some cryptograph, your task is to "translate" the cryptograph into plain text.
Input
Each
case will begin with four integers p, q, e, l followed by a line of
cryptograph. The integers p, q, e, l will be in the range of 32-bit
integer. The cryptograph consists of l integers separated by blanks.
Output
For
each case, output the plain text in a single line. You may assume that
the correct result of plain text are visual ASCII letters, you should
output them as visualable letters with no blank between them.
Sample Input
101 103 7 11 7716 7746 7497 126 8486 4708 7746 623 7298 7357 3239
Sample Output
I-LOVE-ACM.
题意:给定密约和密文,让我们把密文翻译成纯文本
思路:由于M = D(c) = c d mod n,于是我们想到快速幂求出M,即该数据对应的ASCII值,然后以字符的方式输出即可
代码如下:
1 #include <iostream> 2 #include <cstdio> 3 #include <cstdlib> 4 #include <algorithm> 5 #include <cstring> 6 #include <cmath> 7 using namespace std; 8 9 int quickpow(int a,int k,int mod) //作用:求出密文对应的ASCII码 10 { 11 int r=1; 12 while(k) 13 { 14 if(k&1) r=(r*a)%mod; 15 a=((a%mod)*(a%mod))%mod; 16 k>>=1; 17 } 18 return r%mod; 19 } 20 21 int main() 22 { 23 int p,q; 24 int e; 25 int l; 26 while(~scanf("%d%d%d%d",&p,&q,&e,&l)) 27 { 28 int n=p*q; 29 int fn=(p-1)*(q-1); 30 int d; 31 for(int i=fn;;i+=fn) //求出d的值,最多求e次 32 { 33 if((i+1)%e==0) 34 { 35 d=(i+1)/e; 36 break; 37 } 38 } 39 for(int i=0;i<l;i++) 40 { 41 int a; 42 scanf("%d",&a); 43 int m=quickpow(a,d,n)%n; 44 if(i!=l-1) printf("%c",m); 45 else printf("%c ",m); 46 } 47 } 48 return 0; 49 }