题目:
输入一个整型数组,数组里有正数也有负数,数组中一个或连续多个整数组成一个子数组,求所有子数组的和的最大值。要求时间复杂度为O(n)
思路:
1、数组累加
从头到尾逐个累加数组中的每个数字,当累加之和小于0时,从下一个元素开始累加,并通过一个变量保存最大和。
2、动态规划
思路与1一样,假设f(i)为以第i个数字结尾的子数组的最大和,那么
f(i)=A[i], f(i-1)<=0
f(i)=f(i-1)+A[i],f(i-1)>0
初始状态:f(0)=A[0]
最后求max(f(i)).
代码:
1、数字累加
#include <iostream>
using namespace std;
bool g_InvalidInput=false;
int findGreatestSumOfSubArray(int *pData,int nLength){
if(pData==NULL || nLength<=0){
g_InvalidInput=true;
return 0;
}
g_InvalidInput=false;
int nCurSum=0;
int nGreatestSum=0x80000000;
for(int i=0;i<nLength;i++){
if(nCurSum<=0)
nCurSum=pData[i];
else
nCurSum+=pData[i];
if(nCurSum>nGreatestSum)
nGreatestSum=nCurSum;
}
return nGreatestSum;
}
int main()
{
int A[]={1,-2,3,10,-4,7,2,-5};
int len=sizeof(A)/sizeof(A[0]);
cout << findGreatestSumOfSubArray(A,len) << endl;
return 0;
}
2、动态规划
#include <iostream>
using namespace std;
bool g_InvalidInput=false;
int findGreatestSumOfSubArray_DP(int *pData,int nLength){
if(pData==NULL || nLength<=0){
g_InvalidInput=true;
return 0;
}
g_InvalidInput=false;
int nCurSum[nLength];
int nGreatestSum=0x80000000;
nCurSum[0]=pData[0];
for(int i=1;i<nLength;i++){
if(nCurSum[i-1]<=0)
nCurSum[i]=pData[i];
else
nCurSum[i]=nCurSum[i-1]+pData[i];
if(nCurSum[i]>nGreatestSum)
nGreatestSum=nCurSum[i];
}
return nGreatestSum;
}
int main()
{
int A[]={1,-2,3,10,-4,7,2,-5};
int len=sizeof(A)/sizeof(A[0]);
cout << findGreatestSumOfSubArray_DP(A,len) << endl;
return 0;
}
在线测试OJ:
http://www.nowcoder.com/books/coding-interviews/459bd355da1549fa8a49e350bf3df484?rp=2
AC代码:
class Solution {
public:
int FindGreatestSumOfSubArray(vector<int> array) {
unsigned length=array.size();
if(length<=0)
return 0;
int curSum=0;
int greatestSum=0x80000000;
for(unsigned int i=0;i<length;i++){
if(curSum<=0)
curSum=array[i];
else
curSum+=array[i];
if(curSum>greatestSum)
greatestSum=curSum;
}
return greatestSum;
}
};