zoukankan      html  css  js  c++  java
  • 浅谈压缩感知(二十三):压缩感知重构算法之压缩采样匹配追踪(CoSaMP)

    主要内容:

    1. CoSaMP的算法流程
    2. CoSaMP的MATLAB实现
    3. 一维信号的实验与结果
    4. 测量数M与重构成功概率关系的实验与结果

    一、CoSaMP的算法流程

    压缩采样匹配追踪(CompressiveSampling MP)是D. Needell继ROMP之后提出的又一个具有较大影响力的重构算法。CoSaMP也是对OMP的一种改进,每次迭代选择多个原子,除了原子的选择标准之外,它有一点不同于ROMP:ROMP每次迭代已经选择的原子会一直保留,而CoSaMP每次迭代选择的原子在下次迭代中可能会被抛弃。

    二、CS_CoSaMP的MATLAB实现(CS_CoSaMP.m)

    function [ theta ] = CS_CoSaMP( y,A,K )
    %   CS_CoSaOMP
    %   Detailed explanation goes here
    %   y = Phi * x
    %   x = Psi * theta
    %    y = Phi*Psi * theta
    %   令 A = Phi*Psi, 则y=A*theta
    %   K is the sparsity level
    %   现在已知y和A,求theta
    %   Reference:Needell D,Tropp J A.CoSaMP:Iterative signal recovery from
    %   incomplete and inaccurate samples[J].Applied and Computation Harmonic 
    %   Analysis,200926301-321.
        [m,n] = size(y);
        if m<n
            y = y'; %y should be a column vector
        end
        [M,N] = size(A); %传感矩阵A为M*N矩阵
        theta = zeros(N,1); %用来存储恢复的theta(列向量)
        pos_num = []; %用来迭代过程中存储A被选择的列序号
        res = y; %初始化残差(residual)为y
        for kk=1:K %最多迭代K次
            %(1) Identification
            product = A'*res; %传感矩阵A各列与残差的内积
            [val,pos]=sort(abs(product),'descend');
            Js = pos(1:2*K); %选出内积值最大的2K列
            %(2) Support Merger
            Is = union(pos_num,Js); %Pos_theta与Js并集
            %(3) Estimation
            %At的行数要大于列数,此为最小二乘的基础(列线性无关)
            if length(Is)<=M
                At = A(:,Is); %将A的这几列组成矩阵At
            else %At的列数大于行数,列必为线性相关的,At'*At将不可逆
                if kk == 1
                    theta_ls = 0;
                end
                break; %跳出for循环
            end
            %y=At*theta,以下求theta的最小二乘解(Least Square)
            theta_ls = (At'*At)^(-1)*At'*y; %最小二乘解
            %(4) Pruning
            [val,pos]=sort(abs(theta_ls),'descend');
            %(5) Sample Update
            pos_num = Is(pos(1:K));
            theta_ls = theta_ls(pos(1:K));
            %At(:,pos(1:K))*theta_ls是y在At(:,pos(1:K))列空间上的正交投影
            res = y - At(:,pos(1:K))*theta_ls; %更新残差 
            if norm(res)<1e-6 %Repeat the steps until r=0
                break; %跳出for循环
            end
        end
        theta(pos_num)=theta_ls; %恢复出的theta
    end

    三、一维信号的实验与结果

    %压缩感知重构算法测试
    clear all;close all;clc;
    M = 64; %观测值个数
    N = 256; %信号x的长度
    K = 12; %信号x的稀疏度
    Index_K = randperm(N);
    x = zeros(N,1);
    x(Index_K(1:K)) = 5*randn(K,1); %x为K稀疏的,且位置是随机的
    Psi = eye(N); %x本身是稀疏的,定义稀疏矩阵为单位阵x=Psi*theta
    Phi = randn(M,N); %测量矩阵为高斯矩阵
    A = Phi * Psi; %传感矩阵
    y = Phi * x; %得到观测向量y
    
    %% 恢复重构信号x
    tic
    theta = CS_CoSaMP( y,A,K );
    x_r = Psi * theta; % x=Psi * theta
    toc
    
    %% 绘图
    figure;
    plot(x_r,'k.-'); %绘出x的恢复信号
    hold on;
    plot(x,'r'); %绘出原信号x
    hold off;
    legend('Recovery','Original')
    fprintf('
    恢复残差:');
    norm(x_r-x) %恢复残差

    四、测量数M与重构成功概率关系的实验与结果

    clear all;close all;clc;
    
    %% 参数配置初始化
    CNT = 1000; %对于每组(K,M,N),重复迭代次数
    N = 256; %信号x的长度
    Psi = eye(N); %x本身是稀疏的,定义稀疏矩阵为单位阵x=Psi*theta
    K_set = [4,12,20,28,36]; %信号x的稀疏度集合
    Percentage = zeros(length(K_set),N); %存储恢复成功概率
    
    %% 主循环,遍历每组(K,M,N)
    tic
    for kk = 1:length(K_set)
        K = K_set(kk); %本次稀疏度
        M_set = 2*K:5:N; %M没必要全部遍历,每隔5测试一个就可以了
        PercentageK = zeros(1,length(M_set)); %存储此稀疏度K下不同M的恢复成功概率
        for mm = 1:length(M_set)
           M = M_set(mm); %本次观测值个数
           fprintf('K=%d,M=%d
    ',K,M);
           P = 0;
           for cnt = 1:CNT %每个观测值个数均运行CNT次
                Index_K = randperm(N);
                x = zeros(N,1);
                x(Index_K(1:K)) = 5*randn(K,1); %x为K稀疏的,且位置是随机的                
                Phi = randn(M,N)/sqrt(M); %测量矩阵为高斯矩阵
                A = Phi * Psi; %传感矩阵
                y = Phi * x; %得到观测向量y
                theta = CS_CoSaMP(y,A,K); %恢复重构信号theta
                x_r = Psi * theta; % x=Psi * theta
                if norm(x_r-x)<1e-6 %如果残差小于1e-6则认为恢复成功
                    P = P + 1;
                end
           end
           PercentageK(mm) = P/CNT*100; %计算恢复概率
        end
        Percentage(kk,1:length(M_set)) = PercentageK;
    end
    toc
    save CoSaMPMtoPercentage1000 %运行一次不容易,把变量全部存储下来
    
    %% 绘图
    S = ['-ks';'-ko';'-kd';'-kv';'-k*'];
    figure;
    for kk = 1:length(K_set)
        K = K_set(kk);
        M_set = 2*K:5:N;
        L_Mset = length(M_set);
        plot(M_set,Percentage(kk,1:L_Mset),S(kk,:));%绘出x的恢复信号
        hold on;
    end
    hold off;
    xlim([0 256]);
    legend('K=4','K=12','K=20','K=28','K=36');
    xlabel('Number of measurements(M)');
    ylabel('Percentage recovered');
    title('Percentage of input signals recovered correctly(N=256)(Gaussian)');

    五、参考文章

    http://blog.csdn.net/jbb0523/article/details/45441361

  • 相关阅读:
    如何使用php实现首页和子页面之间的交互
    用php实现,打开哪个页面哪个页面就有默认的样式
    后台链接前台有关显示不显示
    上传文件的最大值,post传值的最大值得修改
    linux 操作系统的安装,本地登录及远程登录,vnc连接操作详细步骤
    滑动组件
    Numpy简介
    java对象序列化
    集合类操作需要注意的地方
    TreeMap详解
  • 原文地址:https://www.cnblogs.com/AndyJee/p/5121410.html
Copyright © 2011-2022 走看看