zoukankan      html  css  js  c++  java
  • 多层神经网络python实现

    引言:神经网络在线教程有很多,如Andrew NG的deep leaning课程或者Michael Nielsen的在线教程《neural networks and deep learning》都讲述的很详细,只要认真听课,很好上手的。

    循序渐进构建L层神经网络:

    1.初始化参数

      1)初始化两层神经网络参数,模型结构LINEAR -> RELU ——> LINEAR -> SIGMOID

    def initialize_parameters(n_x, n_h, n_y):
        """
        Argument:
        n_x -- size of the input layer
        n_h -- size of the hidden layer
        n_y -- size of the output layer
        
        Returns:
        parameters -- python dictionary containing your parameters:
                        W1 -- weight matrix of shape (n_h, n_x)
                        b1 -- bias vector of shape (n_h, 1)
                        W2 -- weight matrix of shape (n_y, n_h)
                        b2 -- bias vector of shape (n_y, 1)
        """
        
        np.random.seed(1)
        
        W1 = np.random.randn(n_h, n_x) * 0.01
        b1 = np.zeros(shape=(n_h, 1))
        W2 = np.random.randn(n_y, n_h) * 0.01
        b2 = np.zeros(shape=(n_y, 1))
        
        assert(W1.shape == (n_h, n_x))
        assert(b1.shape == (n_h, 1))
        assert(W2.shape == (n_y, n_h))
        assert(b2.shape == (n_y, 1))
        
        parameters = {"W1": W1,
                      "b1": b1,
                      "W2": W2,
                      "b2": b2}
        
        return parameters

    2)递归初始化L层神经网络参数,模型结构[LINEAR -> RELU] *(L-1) -——> LINEAR -> SIGMOID

    def initialize_parameters_deep(layer_dims):
        """
        Arguments:
        layer_dims -- python array (list) containing the dimensions of each layer in our network
        
        Returns:
        parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL":
                        Wl -- weight matrix of shape (layer_dims[l], layer_dims[l-1])
                        bl -- bias vector of shape (layer_dims[l], 1)
        """
        
        np.random.seed(3)
        parameters = {}
        L = len(layer_dims)            # number of layers in the network
    
        for l in range(1, L):
            parameters['W' + str(l)] = np.random.randn(layer_dims[l], layer_dims[l - 1]) * 0.01
            parameters['b' + str(l)] = np.zeros((layer_dims[l], 1))
            
            assert(parameters['W' + str(l)].shape == (layer_dims[l], layer_dims[l - 1]))
            assert(parameters['b' + str(l)].shape == (layer_dims[l], 1))
    
            
        return parameters

    2.L层模型前向传播

     1)线性前向传播公式:

    def linear_forward(A, W, b):
        """
        Implement the linear part of a layer's forward propagation.
    
        Arguments:
        A -- activations from previous layer (or input data): (size of previous layer, number of examples)
        W -- weights matrix: numpy array of shape (size of current layer, size of previous layer)
        b -- bias vector, numpy array of shape (size of the current layer, 1)
    
        Returns:
        Z -- the input of the activation function, also called pre-activation parameter 
        cache -- a python dictionary containing "A", "W" and "b" ; stored for computing the backward pass efficiently
        """
        
        Z = np.dot(W, A) + b
     
        assert(Z.shape == (W.shape[0], A.shape[1]))
        cache = (A, W, b)
        
        return Z, cache

     2)激活函数前向传播

    def linear_activation_forward(A_prev, W, b, activation):
        """
        Implement the forward propagation for the LINEAR->ACTIVATION layer
    
        Arguments:
        A_prev -- activations from previous layer (or input data): (size of previous layer, number of examples)
        W -- weights matrix: numpy array of shape (size of current layer, size of previous layer)
        b -- bias vector, numpy array of shape (size of the current layer, 1)
        activation -- the activation to be used in this layer, stored as a text string: "sigmoid" or "relu"
    
        Returns:
        A -- the output of the activation function, also called the post-activation value 
        cache -- a python dictionary containing "linear_cache" and "activation_cache";
                 stored for computing the backward pass efficiently
        """
        
        if activation == "sigmoid":
            # Inputs: "A_prev, W, b". Outputs: "A, activation_cache".
            Z, linear_cache = linear_forward(A_prev, W, b)
            A, activation_cache = sigmoid(Z)
        elif activation == "relu":
            # Inputs: "A_prev, W, b". Outputs: "A, activation_cache".
            Z, linear_cache = linear_forward(A_prev, W, b)
            A, activation_cache = relu(Z)
        
        assert (A.shape == (W.shape[0], A_prev.shape[1]))
        cache = (linear_cache, activation_cache)
    
        return A, cache

    3)L层模型前向传播:

    其中, $A^{[L]} = sigma(Z^{[L]}) = sigma(W^{[L]} A^{[L-1]} + b^{[L]})$,实现过程:

    def L_model_forward(X, parameters):
        """
        Implement forward propagation for the [LINEAR->RELU]*(L-1)->LINEAR->SIGMOID computation
        
        Arguments:
        X -- data, numpy array of shape (input size, number of examples)
        parameters -- output of initialize_parameters_deep()
        
        Returns:
        AL -- last post-activation value
        caches -- list of caches containing:
                    every cache of linear_relu_forward() (there are L-1 of them, indexed from 0 to L-2)
                    the cache of linear_sigmoid_forward() (there is one, indexed L-1)
        """
    
        caches = []
        A = X
        L = len(parameters) // 2                  # number of layers in the neural network
        
        # Implement [LINEAR -> RELU]*(L-1). Add "cache" to the "caches" list.
        for l in range(1, L):
            A_prev = A 
            A, cache = linear_activation_forward(A_prev, 
                                                 parameters['W' + str(l)], 
                                                 parameters['b' + str(l)], 
                                                 activation='relu')
            caches.append(cache)
            
        
        # Implement LINEAR -> SIGMOID. Add "cache" to the "caches" list.
        AL, cache = linear_activation_forward(A, 
                                              parameters['W' + str(L)], 
                                              parameters['b' + str(L)], 
                                              activation='sigmoid')
        caches.append(cache)
    
        
        assert(AL.shape == (1, X.shape[1]))
                
        return AL, caches

    3.交叉熵损失函数

    def compute_cost(AL, Y):
        """
        Implement the cost function defined by equation (7).
    
        Arguments:
        AL -- probability vector corresponding to your label predictions, shape (1, number of examples)
        Y -- true "label" vector (for example: containing 0 if non-cat, 1 if cat), shape (1, number of examples)
    
        Returns:
        cost -- cross-entropy cost
        """
        
        m = Y.shape[1]
    
        # Compute loss from aL and y.
        cost = (-1 / m) * np.sum(np.multiply(Y, np.log(AL)) + np.multiply(1 - Y, np.log(1 - AL)))
        
        cost = np.squeeze(cost)      # To make sure your cost's shape is what we expect (e.g. this turns [[17]] into 17).
        assert(cost.shape == ())
        
        return cost

    4.L-层反向传导实现

    中,$$ db^{[l]} = frac{partial mathcal{L} }{partial b^{[l]}} = frac{1}{m} sum_{i = 1}^{m} dZ^{[l](i)}	ag{9}$$ ; $$ dA^{[l-1]} = frac{partial mathcal{L} }{partial A^{[l-1]}} = W^{[l] T} dZ^{[l]} 	ag{10}$$

    1)线性反向传播:

    def linear_backward(dZ, cache):
        """
        Implement the linear portion of backward propagation for a single layer (layer l)
    
        Arguments:
        dZ -- Gradient of the cost with respect to the linear output (of current layer l)
        cache -- tuple of values (A_prev, W, b) coming from the forward propagation in the current layer
    
        Returns:
        dA_prev -- Gradient of the cost with respect to the activation (of the previous layer l-1), same shape as A_prev
        dW -- Gradient of the cost with respect to W (current layer l), same shape as W
        db -- Gradient of the cost with respect to b (current layer l), same shape as b
        """
        A_prev, W, b = cache
        m = A_prev.shape[1]
    
        dW = np.dot(dZ, cache[0].T) / m
        db = np.squeeze(np.sum(dZ, axis=1, keepdims=True)) / m
        dA_prev = np.dot(cache[1].T, dZ)
        
        assert (dA_prev.shape == A_prev.shape)
        assert (dW.shape == W.shape)
        assert (isinstance(db, float))
        
        return dA_prev, dW, db

    2)激活函数反向传导:

    def linear_activation_backward(dA, cache, activation):
        """
        Implement the backward propagation for the LINEAR->ACTIVATION layer.
        
        Arguments:
        dA -- post-activation gradient for current layer l 
        cache -- tuple of values (linear_cache, activation_cache) we store for computing backward propagation efficiently
        activation -- the activation to be used in this layer, stored as a text string: "sigmoid" or "relu"
        
        Returns:
        dA_prev -- Gradient of the cost with respect to the activation (of the previous layer l-1), same shape as A_prev
        dW -- Gradient of the cost with respect to W (current layer l), same shape as W
        db -- Gradient of the cost with respect to b (current layer l), same shape as b
        """
        linear_cache, activation_cache = cache
        
        if activation == "relu":
            dZ = relu_backward(dA, activation_cache)   
        elif activation == "sigmoid":
            dZ = sigmoid_backward(dA, activation_cache)
        
        # Shorten the code
        dA_prev, dW, db = linear_backward(dZ, linear_cache)
        
        return dA_prev, dW, db

    3)L层模型反向传播:

    def L_model_backward(AL, Y, caches):
        """
        Implement the backward propagation for the [LINEAR->RELU] * (L-1) -> LINEAR -> SIGMOID group
        
        Arguments:
        AL -- probability vector, output of the forward propagation (L_model_forward())
        Y -- true "label" vector (containing 0 if non-cat, 1 if cat)
        caches -- list of caches containing:
                    every cache of linear_activation_forward() with "relu" (it's caches[l], for l in range(L-1) i.e l = 0...L-2)
                    the cache of linear_activation_forward() with "sigmoid" (it's caches[L-1])
        
        Returns:
        grads -- A dictionary with the gradients
                 grads["dA" + str(l)] = ... 
                 grads["dW" + str(l)] = ...
                 grads["db" + str(l)] = ... 
        """
        grads = {}
        L = len(caches) # the number of layers
        m = AL.shape[1]
        Y = Y.reshape(AL.shape) # after this line, Y is the same shape as AL
        
        # Initializing the backpropagation
        dAL = dAL = - (np.divide(Y, AL) - np.divide(1 - Y, 1 - AL))
        
        # Lth layer (SIGMOID -> LINEAR) gradients. Inputs: "AL, Y, caches". Outputs: "grads["dAL"], grads["dWL"], grads["dbL"]
        current_cache = caches[-1]
        grads["dA" + str(L)], grads["dW" + str(L)], grads["db" + str(L)] = linear_backward(sigmoid_backward(dAL,current_cache[1]), current_cache[0])
        
        for l in reversed(range(L-1)):
            # lth layer: (RELU -> LINEAR) gradients.
            # Inputs: "grads["dA" + str(l + 2)], caches". Outputs: "grads["dA" + str(l + 1)] , grads["dW" + str(l + 1)] , grads["db" + str(l + 1)] 
            current_cache = caches[l]
            dA_prev_temp, dW_temp, db_temp = linear_backward(sigmoid_backward(dAL, caches[1]), caches[0])
            grads["dA" + str(l + 1)] = dA_prev_temp
            grads["dW" + str(l + 1)] = dW_temp
            grads["db" + str(l + 1)] = db_temp
    
        return grads

    5.更新参数

    $$ W^{[l]} = W^{[l]} - alpha 	ext{ } dW^{[l]} 	ag{16}$$$$ b^{[l]} = b^{[l]} - alpha 	ext{ } db^{[l]} 	ag{17}$$

    def update_parameters(parameters, grads, learning_rate):
        """
        Update parameters using gradient descent
        
        Arguments:
        parameters -- python dictionary containing your parameters 
        grads -- python dictionary containing your gradients, output of L_model_backward
        
        Returns:
        parameters -- python dictionary containing your updated parameters 
                      parameters["W" + str(l)] = ... 
                      parameters["b" + str(l)] = ...
        """
        
        L = len(parameters) // 2 # number of layers in the neural network
    
        # Update rule for each parameter. Use a for loop.
        for l in range(L):
            parameters["W" + str(l + 1)] = parameters["W" + str(l + 1)] - learning_rate * grads["dW" + str(l + 1)]
            parameters["b" + str(l + 1)] = parameters["b" + str(l + 1)] - learning_rate * grads["db" + str(l + 1)]
            
        return parameters
  • 相关阅读:
    Qt之添加QLabel的点击事件
    Qt之布局管理--基本布局
    Qt之界面实现技巧
    Qt之键盘讲解
    Qt之多窗口切换
    Qt之自定义信号和槽函数
    Qt之重写QLabel类
    mysql学习(四)-字段类型
    mysql学习(三)
    mysql 复习与学习(二)数据库及表结构的创建删除
  • 原文地址:https://www.cnblogs.com/AngelaSunny/p/7718973.html
Copyright © 2011-2022 走看看