zoukankan      html  css  js  c++  java
  • 《算法导论》读书笔记之第3章 函数的增长

      本章介绍了算法分析中的渐进分析符号,几个重要渐进记号的定义如下:

    Θ(g(n))={ f(n): 存在正常数c1,c2和n0,使对所有的n>=n0,有0<=c1g(n)<=f(n)<=c2g(n) }
    O(g(n))={ f(n): 存在正常数c和n0,使对所有n>=n0,有0<=f(n)<=cg(n) }
    Ω(g(n))={ f(n): 存在正常数c和n0,使对所有n>=n0,有0<=cg(n)<=f(n) }
    o(g(n))={ f(n): 对任意正常数c,存在常数n0>0,使对所有的n>=n0,有0<=f(n)<=cg(n) }
    ω(g(n))={ f(n): 对任意正常数c,存在常数n0>0,使对所有的n>=n0,有0<=cg(n)<f(n) }
     
    f(n)=Ω(g(n)),表示这个算法是有一个渐近下界的,这个渐近下界为g(n),算法的运行时间f(n)趋近并大于等于这个g(n)。

    f(n)=Θ(g(n)),表示这个算法是有一个渐近确界的,这个渐近确界为g(n),算法的运行时间f(n)趋近g(n)。

    f(n)=O(g(n)),表示这个算法是有一个渐近上界的,这个渐近上界为g(n),算法的运行时间f(n)趋近并小于等于这个g(n)。

  • 相关阅读:
    vsftp
    数据类型
    第三篇:表相关操作
    第二篇:库相关操作
    第一篇: 初识数据库
    五 python并发编程之IO模型
    四 python并发编程之协程
    Python GIL
    三 python并发编程之多线程-重点
    三 python并发编程之多线程-理论
  • 原文地址:https://www.cnblogs.com/Anker/p/2872261.html
Copyright © 2011-2022 走看看