zoukankan      html  css  js  c++  java
  • 斯坦福CS224n课程作业

    斯坦福CS224n作业一

    softmax

    作业要求如下:

    解析:题目要求我们证明(softmax)函数具有常数不变性。

    解答:对于(x+c)的每一维来说,有如下等式成立:

    [softmax(x+c)_{i}=frac{e^{x_{i}+c}}{sum_{j}e^{x_{j}+c}}=frac{e^{x_{i}}*e^{c}}{sum_{j}(e^{x_{j}}*e^{c})}=frac{e^{x_{i}}*e^{c}}{sum_{j}(e^{x_{j}})*e^{c}}=frac{e^{x_{i}}}{sum_{j}e^{x_{j}}}=softmax(x)_{i} ]

    则可知(softmax(x)=softmax(x+c))成立

    Neural Network Basics

    求解sigmoid函数梯度

    作业要求如下:

    解析:本题要求我们计算(sigma(x))函数的梯度,并用(sigma(x))表示结果
    解答:$$frac{partial{(sigma(x)})}{partial{x}}=frac{partial{(frac{1}{1+e^{-x}}})}{partial{x}}$$
    (a=1+e^{-x}),应用链式法则可以得到:

    [frac{partial{(sigma(x)})}{partial{x}}=frac{partial{(frac{1}{a}})}{partial{x}}=-(frac{1}{a})^{2}*frac{partial{a}}{partial{x}}=-(frac{1}{a})^{2}*e^{-x}*(-1)=frac{e^{-x}}{(1+e^{-x})^{2}} ]

    (sigma(x))可以表示为(sigma(x)-sigma(x)^{2})

    softmax + 交叉熵的梯度推导

    作业要求如下:

    解析:本题给定了实际值(y),预测值(hat{y}),以及softmax的输入向量( heta),要求我们求解(CE(y,hat{y}))( heta)的梯度
    解答:
    对于每个( heta_{i})来说,(CE(y,hat{y}))( heta_{i})的梯度如下所示:

    可知,对于所有的i来说,(CE(y,hat{y}))( heta_{i})的梯度为(hat{y}-y)

    三层神经网络的梯度推导

    作业要求如下:

    解析:本题要求推导(CE(y,hat{y}))对输入(x)的梯度。
    解答:

  • 相关阅读:
    【POJ】1287 Networking
    【POJ】1251 Jungle Roads
    【POJ】1182 食物链
    【POJ】2492 A Bug's Life
    【HDUOJ】1213 How many tables
    【POJ】1611 The Suspects
    【POJ】2236 Wireless Network
    【POJ】2240 Arbitrage
    【POJ】3660 Cow Contest
    【POJ】1502 MPI Maelstrom
  • 原文地址:https://www.cnblogs.com/AnnaJuly/p/10783347.html
Copyright © 2011-2022 走看看