zoukankan      html  css  js  c++  java
  • HDU 1588 Gauss Fibonacci(矩阵快速幂)

    Gauss Fibonacci

    Time Limit: 3000/1000 MS (Java/Others)     Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 27    Accepted Submission(s): 5
    Problem Description
    Without expecting, Angel replied quickly.She says: "I'v heard that you'r a very clever boy. So if you wanna me be your GF, you should solve the problem called GF~. "
    How good an opportunity that Gardon can not give up! The "Problem GF" told by Angel is actually "Gauss Fibonacci".
    As we know ,Gauss is the famous mathematician who worked out the sum from 1 to 100 very quickly, and Fibonacci is the crazy man who invented some numbers.

    Arithmetic progression:
    g(i)=k*i+b;
    We assume k and b are both non-nagetive integers.

    Fibonacci Numbers:
    f(0)=0
    f(1)=1
    f(n)=f(n-1)+f(n-2) (n>=2)

    The Gauss Fibonacci problem is described as follows:
    Given k,b,n ,calculate the sum of every f(g(i)) for 0<=i<n
    The answer may be very large, so you should divide this answer by M and just output the remainder instead.
     
    Input
    The input contains serveral lines. For each line there are four non-nagetive integers: k,b,n,M
    Each of them will not exceed 1,000,000,000.
     
    Output
    For each line input, out the value described above.
     
    SampleInput
    2 1 4 100
    2 0 4 100
     
    SampleOutput
    21
    12

    by yxt

    用于构造斐波那契的矩阵为

    1,1

    1,0

    设这个矩阵为A。

    sum=f(b)+f(k+b)+f(2*k+b)+f(3*k+b)+........+f((n-1)*k+b)

    <=>sum=A^b+A^(k+b)+A^(2*k+b)+A^(3*k+b)+........+A^((n-1)*k+b)

    <=>sum=A^b+A^b*(A^k+A^2*k+A^3*k+.......+A^((n-1)*k))  (1)

    设矩阵B为A^k;

    那么(1)式为   sum=A^b+A^b*(B+B^2+B^3+......+B^(n-1));

    显然,这时候就可以用二分矩阵做了,括号内的就跟POJ 3233的形式一样了。

    代码如下

    #include <iostream>
    #include <cstdio>
    #include <string>
    #include <cstring>
    #include <stdlib.h>
    #include <math.h>
    #include <ctype.h>
    #include <queue>
    #include <map>
    #include <set>
    #include <algorithm>
    
    using namespace std;
    #define LL __int64
    LL mod;
    struct matrix
    {
        LL ma[3][3];
    }init, res1, res2, ans;
    matrix Mult(matrix x, matrix y)//矩阵相乘
    {
        matrix tmp;
        int i, j, k;
        for(i=0;i<2;i++)
        {
            for(j=0;j<2;j++)
            {
                tmp.ma[i][j]=0;
                for(k=0;k<2;k++)
                {
                    tmp.ma[i][j]=(tmp.ma[i][j]+x.ma[i][k]*y.ma[k][j])%mod;
                }
            }
        }
        return tmp;
    }
    matrix Pow(matrix x, int k) //矩阵快速幂关键
    {
        matrix tmp;
        int i, j;
        for(i=0;i<2;i++) for(j=0;j<2;j++) tmp.ma[i][j]=(i==j);
        while(k)
        {
            if(k&1) tmp=Mult(tmp,x);
            x=Mult(x,x);
            k>>=1;
        }
        return tmp;
    }
    matrix Add(matrix x, matrix y)//矩阵相加
    {
        int i, j;
        matrix tmp;
        for(i=0;i<2;i++)
        {
            for(j=0;j<2;j++)
            {
                tmp.ma[i][j]=(x.ma[i][j]+y.ma[i][j])%mod;
            }
        }
        return tmp;
    }
    matrix Sum(matrix x, int k)//等比矩阵求和
    {
        if(k==1) return x;
        if(k&1)
            return Add(Sum(x,k-1),Pow(x,k));
        matrix tmp;
        tmp=Sum(x,k>>1);
        return Add(tmp,Mult(tmp,Pow(x,k>>1)));
    }
    int main()
    {
        int k, b, n;
        while(scanf("%d%d%d%d",&k,&b,&n,&mod)!=EOF)
        {
            init.ma[0][0]=1;
            init.ma[0][1]=1;
            init.ma[1][0]=1;
            init.ma[1][1]=0;
            res1=Pow(init,b);
            res2=Pow(init,k);
            ans=Add(res1,Mult(res1,Sum(res2,n-1)));
            printf("%I64d
    ",ans.ma[0][1]);
        }
        return 0;
    }
  • 相关阅读:
    [转]Amazon DynamoDB – a Fast and Scalable NoSQL Database Service Designed for Internet Scale Applications
    [转]CIDR简介
    [转]Amazon AWS亚马逊云服务免费一年VPS主机成功申请和使用方法
    [转]SQL Server 连接串关键字别名
    [转]各种符号的英文单词
    【解决】SharePoint 2013 当鼠标悬停在用户名称上时页面会崩溃
    【HOW】如何限制Reporting Services报表导出功能中格式选项
    【解决】“不能手工移动或复制项到放置库”
    【解决】SharePoint 2013 with SP1安装问题及解决
    [转]安装SharePoint 2013时安装AppFabric失败(错误码:1603)
  • 原文地址:https://www.cnblogs.com/Annetree/p/6292638.html
Copyright © 2011-2022 走看看