zoukankan      html  css  js  c++  java
  • HDU 1588 Gauss Fibonacci(矩阵快速幂)

    Gauss Fibonacci

    Time Limit: 3000/1000 MS (Java/Others)     Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 27    Accepted Submission(s): 5
    Problem Description
    Without expecting, Angel replied quickly.She says: "I'v heard that you'r a very clever boy. So if you wanna me be your GF, you should solve the problem called GF~. "
    How good an opportunity that Gardon can not give up! The "Problem GF" told by Angel is actually "Gauss Fibonacci".
    As we know ,Gauss is the famous mathematician who worked out the sum from 1 to 100 very quickly, and Fibonacci is the crazy man who invented some numbers.

    Arithmetic progression:
    g(i)=k*i+b;
    We assume k and b are both non-nagetive integers.

    Fibonacci Numbers:
    f(0)=0
    f(1)=1
    f(n)=f(n-1)+f(n-2) (n>=2)

    The Gauss Fibonacci problem is described as follows:
    Given k,b,n ,calculate the sum of every f(g(i)) for 0<=i<n
    The answer may be very large, so you should divide this answer by M and just output the remainder instead.
     
    Input
    The input contains serveral lines. For each line there are four non-nagetive integers: k,b,n,M
    Each of them will not exceed 1,000,000,000.
     
    Output
    For each line input, out the value described above.
     
    SampleInput
    2 1 4 100
    2 0 4 100
     
    SampleOutput
    21
    12

    by yxt

    用于构造斐波那契的矩阵为

    1,1

    1,0

    设这个矩阵为A。

    sum=f(b)+f(k+b)+f(2*k+b)+f(3*k+b)+........+f((n-1)*k+b)

    <=>sum=A^b+A^(k+b)+A^(2*k+b)+A^(3*k+b)+........+A^((n-1)*k+b)

    <=>sum=A^b+A^b*(A^k+A^2*k+A^3*k+.......+A^((n-1)*k))  (1)

    设矩阵B为A^k;

    那么(1)式为   sum=A^b+A^b*(B+B^2+B^3+......+B^(n-1));

    显然,这时候就可以用二分矩阵做了,括号内的就跟POJ 3233的形式一样了。

    代码如下

    #include <iostream>
    #include <cstdio>
    #include <string>
    #include <cstring>
    #include <stdlib.h>
    #include <math.h>
    #include <ctype.h>
    #include <queue>
    #include <map>
    #include <set>
    #include <algorithm>
    
    using namespace std;
    #define LL __int64
    LL mod;
    struct matrix
    {
        LL ma[3][3];
    }init, res1, res2, ans;
    matrix Mult(matrix x, matrix y)//矩阵相乘
    {
        matrix tmp;
        int i, j, k;
        for(i=0;i<2;i++)
        {
            for(j=0;j<2;j++)
            {
                tmp.ma[i][j]=0;
                for(k=0;k<2;k++)
                {
                    tmp.ma[i][j]=(tmp.ma[i][j]+x.ma[i][k]*y.ma[k][j])%mod;
                }
            }
        }
        return tmp;
    }
    matrix Pow(matrix x, int k) //矩阵快速幂关键
    {
        matrix tmp;
        int i, j;
        for(i=0;i<2;i++) for(j=0;j<2;j++) tmp.ma[i][j]=(i==j);
        while(k)
        {
            if(k&1) tmp=Mult(tmp,x);
            x=Mult(x,x);
            k>>=1;
        }
        return tmp;
    }
    matrix Add(matrix x, matrix y)//矩阵相加
    {
        int i, j;
        matrix tmp;
        for(i=0;i<2;i++)
        {
            for(j=0;j<2;j++)
            {
                tmp.ma[i][j]=(x.ma[i][j]+y.ma[i][j])%mod;
            }
        }
        return tmp;
    }
    matrix Sum(matrix x, int k)//等比矩阵求和
    {
        if(k==1) return x;
        if(k&1)
            return Add(Sum(x,k-1),Pow(x,k));
        matrix tmp;
        tmp=Sum(x,k>>1);
        return Add(tmp,Mult(tmp,Pow(x,k>>1)));
    }
    int main()
    {
        int k, b, n;
        while(scanf("%d%d%d%d",&k,&b,&n,&mod)!=EOF)
        {
            init.ma[0][0]=1;
            init.ma[0][1]=1;
            init.ma[1][0]=1;
            init.ma[1][1]=0;
            res1=Pow(init,b);
            res2=Pow(init,k);
            ans=Add(res1,Mult(res1,Sum(res2,n-1)));
            printf("%I64d
    ",ans.ma[0][1]);
        }
        return 0;
    }
  • 相关阅读:
    Handler机制来处理子线程去更新UI线程控件
    获得某月份的天数
    listview选中没有效果
    kali或其他系统,虚拟机中不能加载镜像
    tomcat开启多个端口
    kali自定义分辨率
    Redis 安装手册
    bash检查centos服务器运行状态
    关于利用RD client远程电脑,和输入法的一些问题
    centOS下 MYSQL基本操作
  • 原文地址:https://www.cnblogs.com/Annetree/p/6292638.html
Copyright © 2011-2022 走看看