zoukankan      html  css  js  c++  java
  • HDU 6034 17多校1 Balala Power!(思维 排序)

    Problem Description

    Talented Mr.Tang has n strings consisting of only lower case characters. He wants to charge them with Balala Power (he could change each character ranged from a to z into each number ranged from 0 to 25, but each two different characters should not be changed into the same number) so that he could calculate the sum of these strings as integers in base 26 hilariously.

    Mr.Tang wants you to maximize the summation. Notice that no string in this problem could have leading zeros except for string "0". It is guaranteed that at least one character does not appear at the beginning of any string.

    The summation may be quite large, so you should output it in modulo 109+7.
     
    Input
    The input contains multiple test cases.

    For each test case, the first line contains one positive integers n, the number of strings. (1n100000)

    Each of the next n lines contains a string si consisting of only lower case letters. (1|si|100000,|si|106)
     
    Output
    For each test case, output "Case #xy" in one line (without quotes), where x indicates the case number starting from 1 and y denotes the answer of corresponding case.
     
    Sample Input
    1
    a
    2
    aa
    bb
    3
    a
    ba
    abc
     
    Sample Output
    Case #1: 25
    Case #2: 1323
    Case #3: 18221
     
    启发博客:http://blog.csdn.net/qq_38576126/article/details/76154963
    其实是一道思路很顺畅的题,将每一个字母在每个位置上的出现次数记录一下,做个排序,注意前导零的情况。
    奇怪的是比赛的时候也想到了这样的情况,但是一直WA,看来是写法的问题,还是写的题不够多。
     
     1 #include<iostream>
     2 #include<cstdio>
     3 #include<cstring>
     4 #include<queue>
     5 #include<algorithm>
     6 #include<cmath>
     7 using namespace std;
     8 
     9 const int MOD=1e9+7;
    10 const int maxn=1e5+5;
    11 struct word
    12 {
    13     int pos;//表示第几个字母
    14     int time[maxn];//各个字母在各位置出现的次数
    15 }q[27];
    16 //不加&的话会TLE,用&比不用快
    17 bool cmp(word &a,word &b)//从小到大排序
    18 {
    19     for(int i=maxn-1;i>1;i--)
    20     {
    21         if(a.time[i]!=b.time[i])
    22             return a.time[i]<b.time[i];
    23     }
    24     return a.time[1]<b.time[1];
    25 }
    26 
    27 int main()
    28 {
    29     int n,len;
    30     char s[maxn];
    31     int t=1;
    32     while(~scanf("%d",&n))
    33     {
    34         int flag[27]={0};
    35         //用来标记各个字母是否可以对应0,从0开始
    36         //0表示可以,1表示不可以
    37         for(int i=0;i<26;i++)
    38         {
    39             q[i].pos=i;
    40             for(int j=0;j<maxn;j++)
    41                 q[i].time[j]=0;
    42         }
    43         while(n--)
    44         {
    45             scanf("%s",&s);
    46             len=strlen(s);
    47             if(len>1)flag[s[0]-'a']=1;
    48             //不能对应0
    49             for(int i=0;i<len;i++)
    50             {
    51                 int y=len-i;//位置反着记
    52                 q[s[i]-'a'].time[y]++;
    53                 //开始做进位处理
    54                 while(q[s[i]-'a'].time[y]==26)
    55                 {
    56                     q[s[i]-'a'].time[y]=0;
    57                     y++;
    58                     q[s[i]-'a'].time[y]++;
    59                 }
    60             }
    61         }
    62         sort(q,q+26,cmp);//把26个字母按从小到大的赋值排好序
    63         //开始处理前导0
    64         int op;//op即赋前导0的位置
    65         for(int i=0;i<26;i++)
    66         {
    67             if(flag[q[i].pos]==0)
    68             {
    69                 op=i;
    70                 break;
    71             }
    72         }
    73         long long sum=0,sumi=0,num,m=1;
    74         for(int i=0;i<26;i++)
    75         {
    76             sumi=0;
    77             if(i==op)
    78                 num=0;
    79             else
    80             {
    81                 num=m;
    82                 m++;
    83             }
    84             for(int j=maxn-1;j>0;j--)
    85             {
    86                 sumi=(sumi*26)%MOD;
    87                 sumi=(sumi+(long long)q[i].time[j]*num)%MOD;
    88             }
    89             sum=(sum+sumi)%MOD;
    90         }
    91         printf("Case #%d: %lld
    ",t++,sum);
    92     }
    93     return 0;
    94 }
  • 相关阅读:
    读码的逻辑设计
    简单拼接图像的tile_images和tile_images_offset算子
    select_shape_proto算子的几种特征模式含义解析
    Photoshop中的高斯模糊、高反差保留和Halcon中的rft频域分析研究
    sort_contours_xld算子的几种排序方式研究
    Region在connection前后进行“交并差”等操作的异同
    Halcon中xld的常见特征的含义总结
    Halcon选择一堆region中面积第N大的region的算法实现
    从去除毛刺的策略看开运算opening_circle和闭运算closing_circle的异同
    Halcon阈值化算子dual_threshold和var_threshold的理解
  • 原文地址:https://www.cnblogs.com/Annetree/p/7358831.html
Copyright © 2011-2022 走看看