For example there is a staricase
N = 3
| ---|
|---| |
|---| |
---| |
There is N = 3 staricase, for each step, you can either take {1 or 2} step at a time. So asking how many ways you can get on N = 3 step:
Answer: should be 3 ways: {1,1,1,}, {1,2}, {2,1}.
Now assue N=0, there is only 1 way, writing a function which takes number N and return the number of ways to get on Nth step.
Solution: The solution can involve recursion. We can use Dynamice programming, bottom up approach:
function num_ways_bottom_ip(n) { let nums = []; if (n === 0 || n === 1) { return 1; } nums[0] = nums[1] = 1; for (let i = 2; i <= n; i++) { nums[i] = nums[i - 1] + nums[i - 2]; } return nums[n]; } console.log(num_ways_bottom_ip(5)); // 8
This now takes O(N * |X|) time and O(N) space. X is the step allow to take , in our case, is 2.
Now if the requirements changes form only take {1, 2} steps, to you can take {1,3,5} each at a time; How you could solve the problem;
The idea is pretty similar to {1,2} steps.
nums(i) = nums(i-1) + nums(i-2):
Therefore for {1.3.5} is equals:
nums(1) = nums(i-1) + nums(i-3) + nums(i-5)
We just need to make sure i-3, i-5 should be greater than 0.
function num_ways_bottom_up_X(n, x) { let nums = []; if (n === 0) { return 1; } nums[0] = 1; for (let i = 1; i <= n; i++) { let total = 0; for (let j of x) { if (i - j >= 0) { total += nums[i - j]; } } nums[i] = total; } return nums[n]; } console.log(num_ways_bottom_up_X(5, [1,3,5])); // 5