zoukankan      html  css  js  c++  java
  • [Algorithm -- Dynamic Programming] Recursive Staircase Problem

    For example there is a staricase

          N = 3

                     | ---|

         |---|    |

         |---|            |

    ---|                  |

    There is N = 3 staricase, for each step, you can either take {1 or 2} step at a time. So asking how many ways you can get on N = 3 step:

    Answer: should be 3 ways: {1,1,1,}, {1,2}, {2,1}.

    Now assue N=0, there is only 1 way, writing a function which takes number N and return the number of ways to get on Nth step.

    Solution: The solution can involve recursion. We can use Dynamice programming, bottom up approach:

    function num_ways_bottom_ip(n) {
      let nums = [];
    
      if (n === 0 || n === 1) {
        return 1;
      }
      nums[0] = nums[1] = 1;
      for (let i = 2; i <= n; i++) {
        nums[i] = nums[i - 1] + nums[i - 2];
      }
    
      return nums[n];
    }
    
    console.log(num_ways_bottom_ip(5)); // 8

    This now takes O(N * |X|) time and O(N) space. X is the step allow to take , in our case, is 2.

    Now if the requirements changes form only take {1, 2} steps, to you can take {1,3,5} each at a time; How you could solve the problem;

    The idea is pretty similar to {1,2} steps. 

    nums(i) = nums(i-1) + nums(i-2):

    Therefore for {1.3.5} is equals:

    nums(1) = nums(i-1) + nums(i-3) + nums(i-5)

    We just need to make sure i-3, i-5 should be greater than 0.

    function num_ways_bottom_up_X(n, x) {
      let nums = [];
    
      if (n === 0) {
        return 1;
      }
      nums[0] = 1;
    
      for (let i = 1; i <= n; i++) {
        let total = 0;
        for (let j of x) {
          if (i - j >= 0) {
            total += nums[i - j];
          }
        }
        nums[i] = total;
      }
    
      return nums[n];
    }
    
    console.log(num_ways_bottom_up_X(5, [1,3,5])); // 5
  • 相关阅读:
    1、怎么通过postman创建mock服务?
    13、使用正则表达式完成添加投资项目接口
    12、登录接口实战
    11、简历编写
    下载HTMLTestRunner 地址
    selenium (二)
    python 自动化测试
    Linux 安装MySQL流程
    文件 open 方法
    面向对象知识总结
  • 原文地址:https://www.cnblogs.com/Answer1215/p/10474401.html
Copyright © 2011-2022 走看看