zoukankan      html  css  js  c++  java
  • [Algorithm] Given the root to a binary tree, return the deepest node

    By given a binary tree, and a root node, find the deepest node of this tree.

    We have way to create node:

    function createNode(val, left = null, right = null) {
      return {
        val,
        left,
        addLeft(leftKey) {
          return (this.left = leftKey ? createNode(leftKey) : null);
        },
        right,
        addRight(rightKey) {
          return (this.right = rightKey ? createNode(rightKey) : null);
        }
      };
    }

    Way to create tree:

    function createBT(rootKey) {
      const root = createNode(rootKey);
      return {
        root,
        deepest(node) {
          // code goes here
        }
      };
    }

    Way to construct tree:

    const tree = createBT("root");
    const root = tree.root;
    const left = root.addLeft("left");
    root.addRight("right");
    
    const leftleft = left.addLeft("left.left");
    const leftleftleft = leftleft.addLeft("left.left.left");
    const leftright = left.addRight("left.right");
    leftright.addLeft("left.right.left");

    The way to solve the problem is recursive calling the 'deepest' function for node's left and right leaf, until we reach the base case, which is the node that doesn't contian any left or right leaf.

    function createNode(val, left = null, right = null) {
      return {
        val,
        left,
        addLeft(leftKey) {
          return (this.left = leftKey ? createNode(leftKey) : null);
        },
        right,
        addRight(rightKey) {
          return (this.right = rightKey ? createNode(rightKey) : null);
        }
      };
    }
    
    function createBT(rootKey) {
      const root = createNode(rootKey);
      return {
        root,
        deepest(node) {
          function helper(node, depth) {
            if (node && !node.left && !node.right) {
              return {
                depth,
                node
              };
            }
    
            if (node.left) {
              return helper(node.left, depth + 1);
            } else if (node.right) {
              return helper(node.right, depth + 1);
            }
          }
    
          const { depth: ld, node: ln } = helper(root.left, 1);
          const { depth: rd, node: rn } = helper(root.right, 1);
    
          const max = Math.max(ld, rd);
          if (max === ld) {
            return { depth: ld, node: ln.val };
          } else {
            return { depth: rd, node: rn.val };
          }
        }
      };
    }
    
    const tree = createBT("root");
    const root = tree.root;
    const left = root.addLeft("left");
    root.addRight("right");
    
    const leftleft = left.addLeft("left.left");
    const leftleftleft = leftleft.addLeft("left.left.left");
    const leftright = left.addRight("left.right");
    leftright.addLeft("left.right.left");
    
    console.log(tree.deepest(root)); // {depth: 3, node: "left.left.left"}
  • 相关阅读:
    MySQL — 优化之explain执行计划详解(转)
    项目中常用的MySQL 优化
    通过 MySQL 存储原理来分析排序和锁(转)
    java内存模型(转)
    数据库索引的创建原则
    MySQL中的几种日志了解
    一条SQL语句在MySQL中如何执行的
    SQL
    SQL
    SqlServer性能优化 查询和索引优化(十二)
  • 原文地址:https://www.cnblogs.com/Answer1215/p/10513146.html
Copyright © 2011-2022 走看看